Friedrich racservmn service manual Routine Maintenance

Page 34

Routine Maintenance

NOTE: Units are to be inspected and serviced by qualified service personnel only.

1.Clean the unit air intake filter at least every 250 to 300 fan hours of operation or when the unit's indicator light is on ifso equipped. Clean the filters with a mild detergent in warm water and allow to dry thoroughly before reinstalling.

2.The indoor coil (evaporator coil), the outdoor coil (condenser coil) and base pan should be inspected periodically (yearly or bi-yearly) and cleaned of all debris (lint, dirt, leaves, paper, etc.). Clean the coils and base pan with a soft brush and compressed air or vacuum. If using a pressure washer, be careful not to bend the aluminium fin pack. Use a sweeping up and down motion in the direction of the vertical aluminum fin pack when pressure cleaning coils. Cover all electrical components to protect them from water or spray. Allow the unit to dry thoroughly before reinstalling it in the sleeve.

NOTE: Do not use a caustic coil cleaning agent on coils or base pan. Use a biodegradable cleaning agent and degreaser.

Inspect the indoor blower housing, evaporator blade, condenser fan blade, and condenser shroud periodically (yearly or bi-yearly) and clean of all debris (lint, dirt, mold, fungus, etc.) Clean the blower housing area and blower wheel with an antibacterial / antifungal cleaner. Use a biodegradable cleaning agent and degreaser on condenser fan and condenser shroud. Use warm or cold water when rinsing these items. Allow all items to dry thoroughly before reinstalling them.

3.Periodically (at least yearly or bi-yearly): inspect all control components, both electrical and mechanical, as well as the power supply. Use proper testing instruments (voltmeter, ohmmeter, ammeter, wattmeter, etc.) to perform electrical tests. Use an air conditioning or refrigeration thermometer to check room, outdoor and coil operating temperatures. Use a sling psychrometer to measure wet bulb temperatures indoors and outdoors.

4.Inspect the surrounding area (inside and outside) to ensure that the units' clearances have not been compromised or altered.

5.Inspect the sleeve and drain system periodically (at least yearly or bi-yearly) and clean of all obstructions and debris. Clean both areas with an antibacterial and antifungal cleaner. Rinse both items thoroughly with water and ensure that the drain outlets are operating correctly. Check the sealant around the sleeve and reseal areas as needed.

6.Clean the front cover when needed. Use a mild detergent. Wash and rinse with warm water. Allow it to dry thoroughly before reinstalling it in the chassis.

34

Image 34
Contents 2003 Table of Contents RAC Serial Number Identification Guide 1st Digit Function00001 Page Data Evaporator AIR Operating Electrical Breaker Pressures Ratings Refrig Fuse Performance Evaporator AIR Operating Electrical Breaker Data SS10J10AR-A TEMP. DEG. F Pressures Ratings Heating SC06H10EBtuh WY09A33F-A WY12A33F-A HeatingAmps Refrigeration System Sequence of Operation Breaker Wire SizeFuse/Circuit GroundingWinding Test Thermal Overload ExternalChecking Compressor Efficiency Checking the Internal Overload Terminal Overload TestTerminal Overload Internal FAN MotorResistor System Control Panel System Control Panel KQ Models Only- See FigureEQ Model Only See Figure System Control Panel YQ Model Only System Control Switch WE & WY Models See Figure System Control Switch TestSystem Control Switch KS, SS, KM, SM, SL Models See Figure System Control Panel See FigureSystem Control Switch Heat Pump & Electric Heat Models See FigureTo Adjust FAN Speed To SET Mode of OperationTo Adjust Temperature Smart Center Electronic Control CenterTesting the Electronic Control Error Code Listings To SET the TimerTesting the Electronic Control To SET Hour ClockThermostat YQ Model Only See Figure TestThermostat SQ & KQ Models See Figure Thermostat Models ES, YS, EM, YM, EL, YL See FigureDefrost Thermostat Heat Pump Models Only Thermostat AdjustmentThermostat Bulb Location CAPACITOR, RUN See Figure Defrost Bulb Location Heat Pump Models OnlyCapacitor Test Check Valve Operation Heat Pumps Reversing Valve See FigureSolenoid Coil Heat Pump Models Only See Figure Testing Reversing ValveTo Test Sealed Refrigeration System Repairs VALVE, Drain PAN See FigureHeating Element See Figure Equipment RequiredRotary Compressor Special Troubleshooting and Service Hermetic Component ReplacementSpecial Procedure in the Case Compressor Motor Burnout Equipment Must be CapableUndercharged Refrigerant Systems Method of ChargingOvercharged Refrigerant Systems Restricted Refrigerant System Routine Maintenance Troubleshooting Touch Test Chart To Service Reversing Valves Troubleshooting Cooling Problem To CorrectProblem Possible Cause To Correct Cycles Problem Possible Cause To Correct Troubleshooting Heating Heat pumps Problem Possible Cause To Correct Off and the electric element is energized Troubleshooting Heating Cooling/Electric Models Troubleshooting Chart Cooling System Cools When Heating is Desired YESModels SQ06J10B-B, SQ06J10B-A, SQ08J10C-A, SQ08J10D-A Models KQ08J10B-1, KQ08J10B-A, KQ08J10C-A Schematic Model YQ06J10B-AModel SC06H10D 619-405-06 SL28J30B-A, SL35J30-A, SL35J30-B AlternateConductor Or Brown RED Blue To Capacitor Bracket Wiring Diagram YS12J33-A, YM18J34B-A, YL24J35C-A Model EQ08J11-A, EQ08J11-B IDT Ovld Neutral WE09A33E-B, WE12A33E-A, WE15A33-A WY09A33F-A, WY12A33G-A Testing The Electronic Control XQ Boards & QME Boards Checking Room TemperatureFriedrich AIR Conditioning CO

racservmn specifications

Friedrich Racervmn is an innovative name in the realm of precision engineering, making significant strides in the development of advanced technologies for various industries. This company stands out due to its commitment to creating high-quality, reliable, and efficient products that cater to the diverse needs of its clientele.

One of the main features of Friedrich Racervmn is its focus on research and development. The company invests heavily in R&D to push the boundaries of what is technically possible. This dedication results in the continuous improvement of their product line and the introduction of cutting-edge solutions that leverage the latest advancements in technology.

Among the distinctive technologies used by Friedrich Racervmn is their proprietary manufacturing process, which integrates automation and robotics to enhance efficiency and precision. This not only speeds up production times but also ensures that the products maintain a consistently high quality. The use of Computer Numerical Control (CNC) machines in their processes allows for intricate designs and complex geometries that meet rigorous industry standards.

Moreover, Friedrich Racervmn utilizes innovative materials in their products to ensure durability and performance under various conditions. These materials are selected based on their specific properties, such as strength, weight, and resistance to environmental factors, ensuring that the final output exceeds customer expectations.

Another hallmark of Friedrich Racervmn is their commitment to sustainability. The company actively seeks ways to minimize its environmental footprint by optimizing resource use and incorporating eco-friendly practices throughout its manufacturing processes. This is reflected in their efforts to design products that are not only high-performing but also energy-efficient, helping customers reduce their carbon emissions.

Friedrich Racervmn’s customer service stands out as well. Their team is dedicated to providing exceptional support, ensuring that clients receive personalized attention and solutions tailored to their unique needs. This customer-centric approach is a fundamental part of their philosophy and has contributed to building strong and lasting relationships within the industry.

In summary, Friedrich Racervmn is a leader in precision engineering, recognized for its advanced technologies, innovative manufacturing processes, commitment to sustainability, and outstanding customer service. The company’s focus on quality and innovation positions it as a vital player in the modern industrial landscape, continuously pushing the envelope toward a more technologically advanced and environmentally conscious future.