Baldor MN1928 installation manual Encoder inputs

Page 26

4.5.2 Encoder inputs

The encoder inputs are available on pins a7-a10, b7-b10 and c7-c10. See section 4.2.1.

Two incremental encoders may be connected to NextMove ES, each with complementary A, B and Z channel inputs. Each input channel uses a MAX3095 differential line receiver with pull up resistors and terminators. Encoders must provide RS422 differential signals. The use of individually shielded twisted pair cable is recommended. See section 8.1.10 for details of the encoder power supply.

MicroFlex X7 encoder output

CHA+

1

CHA-

6

 

 

 

NextMove ES

 

 

Vcc

 

 

10k

 

CHA+

b7

 

 

to CPU

 

 

 

120R

MAX3095

CHA-

b10

 

Twisted pair

 

 

DGND

a11 Connect internal shield to DGND.

Shield

Do not connect other end.

 

a32

 

Connect overall shield to

 

 

connector backshells /

 

 

shield connections.

 

 

Figure 11 - Encoder channel input - typical connection from a servo amplifier

(Baldor MicroFlex shown)

4.5.2.1Encoder input frequency

The maximum encoder input frequency is affected by the length of the encoder cables. The theoretical maximum frequency is 20 million quadrature counts per second. This is equivalent to a maximum frequency for the A and B signals of 5MHz. However, the effect of cable length is shown in Table 3:

A and B signal

 

Maximum cable length

frequency

 

 

 

meters

 

feet

 

 

 

 

1.3MHz

2

 

6.56

 

 

 

 

500kHz

10

 

32.8

 

 

 

 

250kHz

20

 

65.6

 

 

 

 

100kHz

50

 

164.0

 

 

 

 

50kHz

100

 

328.1

 

 

 

 

20kHz

300

 

984.2

 

 

 

 

10kHz

700

 

2296.6

 

 

 

 

7kHz

1000

 

3280.8

Table 3 - Effect of cable length on maximum encoder frequency

4-12 Input / Output

MN1928

Image 26
Contents NextMove ES Motion Controller Page Contents Backplanes Troubleshooting Appendices General Information Safety Notice PrecautionsNextMove ES features MN1928 IntroductionIntroduction MN1928 Identifying the catalog number InstalledReceiving and inspection Phase Units and abbreviationsLocation requirements You should read all the sections in Basic InstallationIntroduction Installing the NextMove ES card Other requirements for installation96-pin edge connector Row Pin 1 96-pin connector pin assignment96-pin connector pin assignment Analog I/O Analog inputsAIN0 analog input wiring Analog outputs Analog output Demand0 shownGeneral purpose inputs Digital I/ODigital inputs Auxiliary encoder inputs DIN17 STEP, DIN18 DIR, DIN19 Z Reset input !RSTINTypical digital input wiring Digital outputs DOUT0 DOUT7DOUT8 DOUT11 Digital outputs DOUT8-11 DOUT8 shownError output Error Out Other I/O Stepper control outputsEncoder inputs Location Pin Name Description 96-pin Connector3 RS232 serial connection USB connection Pin Name DescriptionCan connection Typical can network connectionsJP1 This will connect an internal terminating resistor CANopen and Baldor canConnection summary minimum system wiring Drive amplifier axisConnector details for minimum system wiring shown in Figure Backplanes BPL010-501 non-isolated backplane Analog outputs demands DIN1 Mating connector Weidmüller Omnimate BL 3.5/5 Digital output DOUT11 C22 Stepper axes outputs DIR3+ Pin Name Description 96-pin Power inputsEncoder input 13 RS232 serial communication BPL010-502/503 backplane with opto-isolator card Pin Name Description NextMove ES 96-pin Connector Error relay connections Relay connectionsAnalog output, DEMAND0 shown Customer power supply ground DIN15 USR V+ 5.1 BPL010-502 Active high inputs Digital input circuit DIN16 with ‘active low’ inputsUSR COM 6.1 BPL010-502 PNP outputs Digital output circuit DOUT8-11 DOUT8 shown Stepper axes outputs Pin Name Description 96-pin Connector Power inputs 13 RS232 serial communication Input / Output MN1928 Starting the NextMove ES Connecting the NextMove ES to the PCInstalling WorkBench \startPreliminary checks Power on checksInstalling the USB driver WorkBench Help fileStarting WorkBench MN1928 Operation Configuring an axis Selecting a scaleSetting the drive enable output If you are going to use the error output, drag Testing the drive enable output Stepper axis testing Testing the outputServo axis testing and tuning Testing the demand outputTORQUE.4=-5 An introduction to closed loop control Summary, the following rules can be used as a guide NextMove ES servo loop Servo axis tuning for current control Selecting servo loop gainsMN1928 Operation Underdamped response Underdamped responseOverdamped response Overdamped responseCritically damped response Critically damped ideal responseServo axis eliminating steady-state errors Servo axis tuning for velocity control Calculating KvelffKvelff Correct value of Kvelff Adjusting Kprop Correct value of Kprop Digital input/output configuration Digital input configurationDigital output configuration Saving setup information Loading saved information Problem diagnosis SupportMe featureNextMove ES indicators Status displaySurface mount LEDs D3, D4, D16 and D20 D3 yellowMotor control Symptom CheckCommunication WorkBench Troubleshooting MN1928 Input power Input voltage Digital inputs non-isolatedDigital inputs opto-isolated Maximum Minimum High LowDigital outputs general purpose opto-isolated Digital output error output non-isolatedDigital outputs general purpose non-isolated Error relay opto-isolated backplanes Can interfaceWeights and dimensions EnvironmentalSpecifications MN1928 Axis renumbering MN1928 Appendix A-1Appendix MN1928 Index Index MN1928 Underdamped response, 6-18 Units and abbreviations Index MN1928 Comments CommentComments MN1928 Page Baldor Electric Company Box Ft. Smith, AR
Related manuals
Manual 126 pages 18.49 Kb

MN1928 specifications

The Baldor MN1928 is a highly regarded motor designed for a variety of industrial applications, known for its durability and efficiency. This motor is part of Baldor’s extensive range of products, which are engineered to meet the demands of heavy-duty operations.

One of the key features of the Baldor MN1928 is its robust construction. Built with high-quality materials, this motor is designed to withstand harsh environmental conditions often found in industrial settings. The steel frame is not only resilient, but it also enhances the motor's cooling capabilities, enabling it to perform effectively over extended periods.

The MN1928 is equipped with advanced technologies that optimize its performance. One notable technology is the use of high-efficiency induction motor design. This reduces energy consumption significantly and contributes to lower operational costs. The motor is also designed with a continuous duty rating, making it capable of running for long hours without compromising its functionality or lifespan.

In terms of characteristics, the Baldor MN1928 features a reliable ball bearing design, which minimizes friction and wear, ensuring smoother operation and increased reliability. With a horsepower rating that suits a range of applications, it provides the necessary torque and speed to power various machinery effectively. The multi-voltage design allows for versatile installation options, accommodating different electrical systems while ensuring efficient performance.

Another important characteristic of this motor is its ease of maintenance. The design allows for straightforward access to components, making it simple for technicians to perform routine checks and maintenance. This is particularly beneficial in industrial settings where downtime can be costly.

Safety is also a priority in the design of the Baldor MN1928. Equipped with thermal overload protection, it prevents overheating, reducing the risk of damage caused by excessive temperatures during operation. Additionally, the motor complies with various industry standards, ensuring safe operation within diverse environments.

In summary, the Baldor MN1928 stands out as a reliable choice for industrial applications, offering a combination of durability, efficiency, and advanced technology. Its robust construction, high-efficiency design, and safety features make it a preferred option for many enterprises seeking dependable motor solutions.