Toshiba HV6CS-MU operation manual Maintenance/Inspections, Maintenance Record

Page 30

5. Maintenance/Inspections

WARNING

To prevent electric shock, turn off the power before starting maintenance and inspections.

To prevent electric shock or other injury, check to make sure that the unit status indicators read OFF and DISCHARGED before beginning maintenance and inspection work.

To prevent electric shock, do not touch charged parts.

Keep fingers and other body parts, objects, etc. away from the unit mechanism, as you may become caught in the mechanism and injured.

To prevent electric shock or other injury, do not attempt to modify the lock mechanism on the disconnecting switch mounted on the unit power side.

Hazardous voltage can cause serious injury or death. Make sure maintenance and inspection work is performed only by authorized personnel.

The VCB should be maintained and inspected periodically to maintain performance and ensure a long service life. Operating and environmental conditions will usually dictate the frequency of inspection required. NFPA Publication 70B "Electrical Equipment Maintenance" may be used as a guide for setting up the maintenance program.

DANGER

WARNING

Contact with energized components can cause severe injury, death and property damage. Turn off and lock-out primary and control circuit power before servicing.

Improper maintenance can cause severe injury, death and property damage. Only qualified and authorized persons are to install, operate or service this equipment.

Grease is conductive. Do not allow grease or any other substances to WARNING contaminate insulating materials. Contaminated insulators can allow a short

circuit or ground fault to occur.

MAINTENANCE RECORD

Keep a permanent record of all maintenance work. At a minimum, this record should include:

1)Items inspected

2)Reports of any testing

- 24 -

Image 30
Contents HV6CS Vacuum Circuit Breakers Fixed Type 7.2kV Voltage Class Page Important Notice About This Manual Contacting TIC’s Customer Support Center Table of Contents General Safety Information Safety Alert SymbolEquipment Warning Labels Equipment Inspection Connecting and disconnecting the main circuit Operating the VCBInstallation location During UseSpecial environmental conditions Applicable standards pertaining to switching surges Part Names From Receipt to Storage Receipt and UnpackingTransport Wrong Incorrect Method of TransportationTransportation Manual handling Storage Installation Mounting the VCBMounting in the panel Mounting Directly onto the Floor Screw Tightening Tightening torque Nominal Torque DiaPage Main Circuit Terminal Connections Pass the cable or conductor through the insulating cylinderGround Terminal Connections Control Circuit Cable ConnectionsClosing the Circuit OperationManual Operation For Motorized Spring-operated VCBsCharging Handle Closed Lever Opening the Circuit Electrical Operation Control Circuit Motorized OperationPlug Installed in UV Trip Device Undervoltage TripMaintenance/Inspections Maintenance RecordDuring Maintenance/Inspections Types of Maintenance and Inspection WorkInspection Frequency Periodic Inspection Checkpoints Type of inspection Inspection frequencyVacuum Check Location Inspection Criteria Disposition Remarks MethodPrecautions Test Procedure Dielectric Breakdown Characteristics Page Toshiba

HV6CS-MU specifications

The Toshiba HV6CS-MU is a high-performance semiconductor device, primarily designed for automotive applications, particularly in battery management systems and electric vehicles. This versatile chip is part of Toshiba's HV series, known for its reliability, robustness, and efficiency in handling high voltage operations.

One of the standout features of the HV6CS-MU is its ability to operate at high voltages, making it suitable for demanding environments where traditional components may falter. It supports voltages up to 600V, which is essential for managing the power requirements of electric and hybrid vehicles. This high voltage capability allows for efficient energy management in various systems, from power inverters to energy storage units.

Additionally, the HV6CS-MU leverages Toshiba's proprietary technologies, including advanced gate drive and protection circuits. These technologies ensure that the device operates safely and reliably under various conditions. The built-in protection features help guard against over-voltage, over-current, and thermal problems, which are critical for maintaining system integrity and longevity.

Another compelling aspect of the HV6CS-MU is its efficiency. With low on-resistance and fast switching times, it minimizes power loss during operation. This efficiency translates not only to improved performance but also to extended battery life in electric vehicles. The ability to conserve energy is paramount in today's automotive industry, where sustainability and energy efficiency are increasingly important.

Furthermore, the HV6CS-MU is designed with a robust thermal management system. It can operate at elevated temperatures without compromising performance, making it suitable for various automotive environments. This feature is particularly vital in electric vehicles, where components are often subjected to significant heat during operation.

In terms of packaging, the HV6CS-MU comes in a compact, integrated format, allowing for ease of installation within various electronic assemblies. Its small footprint makes it ideal for space-constrained applications, providing engineers with more design flexibility.

In summary, the Toshiba HV6CS-MU is a state-of-the-art semiconductor device that embodies advanced technology, high efficiency, and robust performance characteristics. Its high voltage operation, integrated protection features, and efficient energy management make it a pivotal component in modern automotive designs, particularly in the realm of electric and hybrid vehicles. As the industry continues to evolve towards electrification, devices like the HV6CS-MU will play an essential role in shaping the future of automotive technology.