Emerson IP258 manual Maximum % Solids, Zero Setting Procedure, Span CALIBRATION/GRADIENT Methods

Page 22

6.6MAXIMUM % SOLIDS

To complete the calibration and to enable the system to automatically select the optimum frequency of operation., it is necessary to set the maximum % solids that the system is required to measure.

In the AUTOCAL Menu, select ‘Max % Solids’ (P 160) and enter the value required.

If the maximum % solids are low then the system will choose the higher operating frequency (3.3 MHz). This will give the best possible resolution. If the maximum % solids are higher than can be measured at 3.3 MHz then the system will automatically select the lower frequency (1 MHz). The figure for the maximum % solids that can actually be measured can be seen in MONITOR - DIAGNOSTICS - SENSOR – Max Measurable (D861)

The control unit is now calibrated and ready for operation.

6.7CALIBRATION- Alternative calibration methods

Calibration is normally done via AUTOCAL. However, in special cases, if required, calibration can be done manually.

6.8ZERO SETTING PROCEDURE

Firstly enable access using the “TOGGLE RUN” command in the Main menu. See section 5.2. Next, ensure that the frequency of operation corresponds to the frequency of the sensor by checking parameter D860 located in Monitor\Diagnostics\Sensor\Frequency. If necessary it can be changed. The relevant parameter is “Frequency” (P630) located in Set up\ Engineer\. When the sensor is in “clear” liquid note the value of “Attenuation (D852) located in Monotor\Diagnostics\ Sensor.

To complete the zero setting, enter this value in the appropriate “Zero ref” parameter, located in Calibration\ Manual Entry\Zero ref.. “Zero ref A” (P120) is used for 1MHz sensors, “Zero ref B” (P121) is used for 3.3MHz sensors.

6.9SPAN CALIBRATION/GRADIENT METHODS

There are three alternative ways of setting the gradient relationship between the measured attenuation and the % solids displayed (See Graph shown in Figure2). It is recommended that if AUTOCAL is not used then the Initial Setup should use Method 1: when later, figures are entered according to Methods 2 or 3, these automatically take priority over an original Method I calibration.

The First alternative method uses previous Mobrey experience of slurries/sludges, and the slurry type is chosen by name from a list. The MSM400 then uses the appropriate calibration line.

The Second alternative method uses actual site samples, and as such it is usually the most accurate calibration method. When the MSM400 reading is stable, a sample of slurry is taken for Lab analysis, and the attenuation measured at that time is recorded/entered in the MSM400 memory. Later the Lab result is also entered into a different location in the MSM400 memory, and the microprocessor computes the relationship.

The Third alternative method uses a known mathematical value of attenuation versus suspended solids for the slurry to be monitored from site experience on other tanks or other installations with the same sensor arrangement and slurry.

6.10CALIBRATION METHOD 1-SLURRY TYPE

Enter the CALIBRATION option on the MAIN MENU screen. Then ENTER ‘MANUAL ENTRY’. There are four selections possible here. Select SENSOR\ Sensor Gap and enter the space between sensor faces, in mm. This tells the MSM400 how big the sensor is, to relate it to memory figures of attenuation. Select SLUDGE TYPE (access through CALIBRATION, MANUAL ENTRY, SENSOR menu) and for Method I calibration select one of the listed types to suit the application. The unit will now work with this typical sludge calibration.

6.11CALIBRATION-METHOD 2-SAMPLES

This Method of calibration offers the highest accuracy (and is used by AUTOCAL), since the MSM400 is set up based on actual site sample analysis. It does therefore require quite a lot of site work in taking samples, and analysing the solids %, to enter this later into the MSM400 microprocessor memory.

IP258

22

Image 22
Contents Mobrey Contents Safety Precautions Display Sensor Connection IVE Neutral Earth MainsENT Product Introduction MSM400 Slurry Monitoring System Product DescriptionSlurry Characteristics Ultrasonic Attenuation versus Suspended solidsSuspended Sensor Type MSM433 Mobrey Pipe Section SensorsSensor Type Numbering System MSM400 Displays and Keypad Control UnitKeypad Operation Hart SPECIFICATIONS--MSM400EMC Suspended Sensor Installation Pipe Section InstallationPreliminary Checks Sensor Cables Control UnitTerminal Label Function Relays Hart Connections and Jumper SettingsSensor Connections Current OutputInitial Power UP Safety PrecautionsMains Supply Main Menu Toggle RUN Calibration Setup Toggle RUN Calibration Setup MonitorToggle RUN EX-FACTORY System Features Diagnostic ParametersZero Setting Initial Zero Calibration Methods Auto CAL Auto CAL Zero Setting Procedure Rechecking ZeroAutocal Span Setting Procedure Clear Liquor Press ENT To set 23.1dB 26.2dBSample Press ENT to set 33.6dB 44.2dB Auto CAL LAB ValuesSpan CALIBRATION/GRADIENT Methods Zero Setting ProcedureMaximum % Solids Calibration Method 1-SLURRY TypeAttenuation VALUE-METHOD No. of operation Set Default value Max value Hrs & mins Duty Mode Desludge ModeStart on Stop on Stop if Do not start if INPUT↓ Output Start Time #1 hm 730 P254 Outputs Current Output Relay Operation←−−−−−−− Lower Display AlarmMiddle Display Display option parameter number DescriptionEngineering Frequency SET SettingsSystem Test Current Output Hart Smart Communications SensorsMain Menu SUB Menu Parameter Description Appendix A1Par No Logging Alarm ReportDiagnostics EngineeringMin Max Default Value Parameter DescriptionParameter Description Min Max Default Value MSM400 MonitFrom list 3.6/21mA/hold last reading Min Max Default Value Ex-Factory Manufacturer’s Code Appendix A3 Hart and Psion Operating Instructions Hart ConsiderationsCalibration adjustments at operating conditions Smart Communication with the Mobrey MSM400Further customisation using the Smart HHC Hand Held Communicator Assembly Instructions Handheld Communicator Mobrey CKFig DII. Loop diagram Fig D1 MOBREY-CK* HHC assembly How to connect the Smart Communicator Hand Held Communicator Operation Mobrey Find Save Diary Calc Time Notes World Alarm How to drive a Psion based Smart CommunicatorTAG Tank Help D7.0 Introduction and Function menuD7.1 Monitor/Display Parameters D D7.2 Program Parameters PWorking Register Default RegisterMode KEY Safe RegisterHand Held Communicator Registers Select Data Source Printout or PC transfer of MSM400 programme data 10.0ERROR Messages on the HHC10.1Alarm and Error Messages Display of Parameter Data10.2Invalid Data Entry 10.3Communication Errors Password not OpenInstrument in Multidrop Mode Invalid Action not the Same InstrumentD0 D8 Current Output ** Set current Trim-maximum Trim-maximum 11.0Current Loop Checks and TrimmingCurrent and USE ↑ & ↓ To Trim the Output 12.0Unknown InstrumentD13.0 Smart Interfaces Compatibility D13.1 Introduction 13.3Use of multiple Smart CommunicatorsEmerson Process Management Rosemount Measurement

IP258 specifications

The Emerson IP258 is an advanced industrial monitoring device designed to enhance operational efficiency and ensure optimal performance in various industrial applications. It is particularly suited for monitoring, controlling, and managing processes across diverse industries such as oil and gas, pharmaceuticals, food and beverage, and water treatment.

One of the main features of the IP258 is its robust and flexible architecture, enabling seamless integration with a wide range of field devices, sensors, and control systems. This adaptability ensures that the device can be tailored to specific operational needs, thus streamlining processes and enhancing reliability. Its modular design allows for easy upgrades and expansions, making it a cost-effective solution for companies looking to future-proof their investments.

The IP258 boasts advanced communication technologies, including support for various industrial protocols such as Modbus, Ethernet/IP, and Profibus. This versatile communication capability facilitates real-time data sharing and interoperability between different systems, promoting a cohesive operational environment. The device is equipped with multiple input and output options, which further enhances its functionality and connectivity with existing infrastructure.

Another standout characteristic of the Emerson IP258 is its user-friendly interface, which simplifies operation and minimizes training requirements. The intuitive graphical interface allows operators to easily visualize system performance, access historical data, and quickly identify anomalies. This ease of use not only ensures efficiency during normal operations but also aids in rapid troubleshooting and issue resolution.

The device is designed with high reliability and durability in mind, featuring superior environmental resistance to withstand harsh industrial conditions. Its rugged housing and advanced components ensure long-term performance, reducing the likelihood of unexpected downtime and maintenance costs.

In addition, the IP258 incorporates built-in data logging and analytics capabilities, enabling users to gather insights into operational trends and performance metrics. This feature is essential for predictive maintenance and proactive decision-making, ultimately driving productivity and minimizing operational risks.

Security is another priority in the design of the Emerson IP258. The device includes a comprehensive suite of cybersecurity measures to protect sensitive data and prevent unauthorized access, ensuring that operational integrity is maintained at all times.

Overall, the Emerson IP258 stands out as a powerful and versatile tool for industrial monitoring and control, combining advanced features, robust technology, and user-friendly design to meet the demands of modern industrial environments.