Emerson IP258 manual Slurry Characteristics, Ultrasonic Attenuation versus Suspended solids

Page 6

SLURRY CHARACTERISTICS

The relationship between the measurement of ultrasonic attenuation and the percentage solids of a particular slurry type is dependent on the density of the slurry particles and their average size distribution. This is known from experience for most slurry types, and is expressed as a number, which is the ultrasonic attenuation in deciBels (dB), per mm gap between sensor faces, per one percent suspended solids.

The relationship between attenuation and suspended solids is shown graphically in Figure 2. Calibration of the unit involves adjustment of the zero point, by setting up the sensors in clean liquid (supernatant), and then setting the slope of the straight line graph, either according to past data or from site samples.

In the memory of the MSM400 there is information on various slurry types, to enable simple initial set-up. More accurate adjustment can then be made once site samples have been taken.

Attenuation

(dB)

 

e

 

p

lo

S

 

Zero Ref

% Solids

Figure 2 : Ultrasonic Attenuation versus

Suspended solids

Calibration:

The Mobrey experience with using ultrasonics for suspended solids monitoring has been developed over 25 years. Calibration systems for the MSM400 use this experience, allowing the plant operator to choose whether to set up the unit based on Mobrey site and slurry experience, or whether to take site samples to fine tune that data to suit the specific site conditions. The MSM400 is versatile enough to allow simple or complex calibrations.

IP258

6

Image 6
Contents Mobrey Contents Safety Precautions Sensor Connection IVE Neutral Earth Mains DisplayENT Product Introduction MSM400 Slurry Monitoring System Product DescriptionSlurry Characteristics Ultrasonic Attenuation versus Suspended solidsSuspended Sensor Type MSM433 Mobrey Pipe Section SensorsSensor Type Numbering System Control Unit MSM400 Displays and KeypadKeypad Operation SPECIFICATIONS--MSM400 HartEMC Pipe Section Installation Suspended Sensor InstallationPreliminary Checks Sensor Cables Control UnitTerminal Label Function Relays Hart Connections and Jumper SettingsSensor Connections Current OutputSafety Precautions Initial Power UPMains Supply Main Menu Toggle RUN Calibration Setup Toggle RUN Calibration Setup MonitorToggle RUN Diagnostic Parameters EX-FACTORY System FeaturesZero Setting Initial Zero Calibration Methods Auto CAL Auto CAL Zero Setting Procedure Rechecking ZeroAutocal Span Setting Procedure Clear Liquor Press ENT To set 23.1dB 26.2dBSample Press ENT to set 33.6dB 44.2dB Auto CAL LAB ValuesSpan CALIBRATION/GRADIENT Methods Zero Setting ProcedureMaximum % Solids Calibration Method 1-SLURRY TypeAttenuation VALUE-METHOD Duty Mode Desludge Mode No. of operation Set Default value Max value Hrs & minsStart on Stop on Stop if Do not start if INPUT↓ Output Start Time #1 hm 730 P254 Outputs Current Output Relay Operation←−−−−−−− Lower Display AlarmMiddle Display Display option parameter number DescriptionSettings Engineering Frequency SETSystem Test Current Output Hart Smart Communications SensorsAppendix A1 Main Menu SUB Menu Parameter DescriptionPar No Logging Alarm ReportDiagnostics EngineeringMin Max Default Value Parameter DescriptionParameter Description Min Max Default Value MSM400 MonitFrom list 3.6/21mA/hold last reading Min Max Default Value Ex-Factory Manufacturer’s Code Appendix A3 Hart and Psion Operating Instructions Hart ConsiderationsCalibration adjustments at operating conditions Smart Communication with the Mobrey MSM400Further customisation using the Smart HHC Hand Held Communicator Assembly Instructions Handheld Communicator Mobrey CKFig DII. Loop diagram Fig D1 MOBREY-CK* HHC assembly How to connect the Smart Communicator Hand Held Communicator Operation Mobrey Find Save Diary Calc Time Notes World Alarm How to drive a Psion based Smart CommunicatorTAG Tank Help D7.0 Introduction and Function menuD7.1 Monitor/Display Parameters D D7.2 Program Parameters PWorking Register Default RegisterMode KEY Safe RegisterHand Held Communicator Registers Select Data Source Printout or PC transfer of MSM400 programme data 10.0ERROR Messages on the HHC10.1Alarm and Error Messages Display of Parameter Data10.2Invalid Data Entry 10.3Communication Errors Password not OpenInstrument in Multidrop Mode Invalid Action not the Same InstrumentD0 D8 Current Output ** Set current Trim-maximum Trim-maximum 11.0Current Loop Checks and TrimmingCurrent and USE ↑ & ↓ To Trim the Output 12.0Unknown InstrumentD13.0 Smart Interfaces Compatibility D13.1 Introduction 13.3Use of multiple Smart CommunicatorsEmerson Process Management Rosemount Measurement

IP258 specifications

The Emerson IP258 is an advanced industrial monitoring device designed to enhance operational efficiency and ensure optimal performance in various industrial applications. It is particularly suited for monitoring, controlling, and managing processes across diverse industries such as oil and gas, pharmaceuticals, food and beverage, and water treatment.

One of the main features of the IP258 is its robust and flexible architecture, enabling seamless integration with a wide range of field devices, sensors, and control systems. This adaptability ensures that the device can be tailored to specific operational needs, thus streamlining processes and enhancing reliability. Its modular design allows for easy upgrades and expansions, making it a cost-effective solution for companies looking to future-proof their investments.

The IP258 boasts advanced communication technologies, including support for various industrial protocols such as Modbus, Ethernet/IP, and Profibus. This versatile communication capability facilitates real-time data sharing and interoperability between different systems, promoting a cohesive operational environment. The device is equipped with multiple input and output options, which further enhances its functionality and connectivity with existing infrastructure.

Another standout characteristic of the Emerson IP258 is its user-friendly interface, which simplifies operation and minimizes training requirements. The intuitive graphical interface allows operators to easily visualize system performance, access historical data, and quickly identify anomalies. This ease of use not only ensures efficiency during normal operations but also aids in rapid troubleshooting and issue resolution.

The device is designed with high reliability and durability in mind, featuring superior environmental resistance to withstand harsh industrial conditions. Its rugged housing and advanced components ensure long-term performance, reducing the likelihood of unexpected downtime and maintenance costs.

In addition, the IP258 incorporates built-in data logging and analytics capabilities, enabling users to gather insights into operational trends and performance metrics. This feature is essential for predictive maintenance and proactive decision-making, ultimately driving productivity and minimizing operational risks.

Security is another priority in the design of the Emerson IP258. The device includes a comprehensive suite of cybersecurity measures to protect sensitive data and prevent unauthorized access, ensuring that operational integrity is maintained at all times.

Overall, the Emerson IP258 stands out as a powerful and versatile tool for industrial monitoring and control, combining advanced features, robust technology, and user-friendly design to meet the demands of modern industrial environments.