Analog Devices ADSP-21364 system manual Copyright Information, Limited Warranty, Disclaimer

Models: ADSP-21364

1 77
Download 77 pages 37.14 Kb
Page 2
Image 2

Copyright Information

©2007 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form without prior, express written consent from Analog Devices, Inc.

Printed in the USA.

Limited Warranty

The EZ-KIT Lite evaluation system is warranted against defects in materi- als and workmanship for a period of one year from the date of purchase from Analog Devices or from an authorized dealer.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by impli- cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, VisualDSP++, the VisualDSP++ logo, SHARC, SHARC logo, CROSSCORE, the CROSSCORE logo, EZ-KIT Lite, and EZ-Extender are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of their respective owners.

Page 2
Image 2
Analog Devices ADSP-21364 Copyright Information, Limited Warranty, Disclaimer, Trademark and Service Mark Notice

ADSP-21364 specifications

The Analog Devices ADSP-21364 is a high-performance digital signal processor (DSP) specifically designed for demanding applications in audio, industrial, and communications sectors. It is well-regarded for its powerful processing capabilities, extensive connectivity options, and energy efficiency, making it an ideal choice for complex digital signal processing tasks.

One of the standout features of the ADSP-21364 is its dual Harvard architecture, which allows for simultaneous access to program and data memory. This capability significantly improves performance by reducing bottlenecks, enabling faster execution of algorithms. The processor boasts a clock speed of up to 300 MHz, ensuring it can handle a wide range of real-time signal processing tasks.

The ADSP-21364 is equipped with a rich set of on-chip memory resources, including 64KB of program RAM and 64KB of data RAM. This substantial memory allocation enables the storage of intricate algorithms and large datasets, ensuring that high-performance applications can be executed without the need for external memory, thus reducing latency and power consumption.

Another notable feature of this DSP is its advanced multiprocessing capabilities. The processor includes six processing engines, allowing for parallel processing of multiple tasks. This architecture is particularly beneficial for applications that require simultaneous processing of audio signals, such as digital mixing or effects processing, enhancing the overall throughput.

In terms of connectivity, the ADSP-21364 is equipped with a wide range of I/O options, including serial ports, parallel ports, and a high-speed synchronous port. This versatility facilitates seamless integration with other system components, making the processor an excellent choice for embedded systems that rely on external data sources.

The ADSP-21364 also supports various industry-standard digital audio interfaces, such as I2S and TDM, enabling straightforward interfacing with audio codecs and other digital audio devices. Moreover, it features built-in hardware accelerators for efficient filtering, Fast Fourier Transform (FFT), and interpolation tasks, thereby enhancing its ability to handle complex audio signal processing.

On the power consumption front, the ADSP-21364 is designed with energy efficiency in mind. Its architecture allows for low-power operation modes, which are crucial in battery-powered applications where energy conservation is a priority.

In conclusion, the Analog Devices ADSP-21364 DSP is a robust solution for high-performance digital signal processing needs. With its dual Harvard architecture, extensive memory resources, advanced multiprocessing capabilities, versatile connectivity options, and energy-efficient design, it stands out as a premier choice for a variety of applications in the fields of audio processing, telecommunications, and industrial automation.