UTILISATION DE LA TABLE DE CUISSON

 

CTD-304

3

2

4

1

Devant du boîtier

CTD-304

EMPLACEMENT

MAX. BTU/H

FAIBLE

MIJOTAGE

DU BRÛLEUR

BTU/H

BTU/H

 

 

 

 

 

 

 

 

NAT.

PROP.

NAT & PROP.

NAT & PROP.

 

 

 

 

 

1

10,000

10,000

3,000

1,200

 

 

 

 

 

2, 3

11,000

10,000

3,000

1,200

 

 

 

 

 

4

15,500

15,000

3,000

1,200

 

 

 

 

 

HAUTEUR DE LA FLAMME :

La hauteur correcte de la flamme dépend essentiellement de la taille du fonds de l'ustensile de cuisson, du matériau de l'ustensile, de la quantité et du type de nourriture et de la quantité de liquide dans l'ustensile. Voici quelques règles de base pour sélectionner la hauteur de flamme.

Pour des raisons de sécurité, la flamme ne doit jamais dépasser le fond

du récipient.

HAUTEUR CORRECTE DE LA FLAMME

Ne laissez jamais les flammes lécher les parois du récipient.

Les ustensiles qui conduisent lentement la chaleur (tels que ceux en vitrocéramique) doivent être utilisés avec un feu doux ou moyen. Vous pouvez augmenter légèrement le feu si le volume de liquide est important.

GRILLES DES BRÛLEURS :

Les grilles des brûleurs en fonte sont entièrement recouvertes d'émail de porcelaine, ce qui leur assure une longue durée de vie et empêche la rouille. Des coussins pour haute température soutiennent les grilles pour éviter qu'elles n'égratignent la table de cuisson. Les grilles sont conçues pour permettre de glisser facilement les chaudrons par dessus les grilles. Elles forment des sections imbriquées qui les rendent plus sécuritaires et plus faciles à enlever et nettoyer. Vous trouverez d'autres conseils de nettoyage à la section d'entretien et de nettoyage.

8

Page 25
Image 25
DCS CTD-304, CTD-365 manual Hauteur DE LA Flamme, Grilles DES Brûleurs

CTD-304, CTD-365 specifications

The DCS CTD-365 and CTD-304 are advanced temperature and conductivity sensors that are designed for underwater and marine applications. These instruments are widely recognized for their precision, reliability, and ability to operate in challenging environments. They are essential tools for researchers, marine biologists, and environmental scientists who require accurate data for their studies.

The CTD-365 is equipped with a robust suite of features that allow for high-resolution measurements of temperature and conductivity. It features a compact design that facilitates easy integration into various underwater sensing platforms, including buoys, ROVs, and autonomous underwater vehicles (AUVs). This model is characterized by its wide operational depth range, allowing it to function effectively across various marine environments, from shallow coastal waters to deep oceanic trenches.

One of the core technologies in the CTD-365 is its advanced thermistor and conductivity cell design, which ensures quick response times and high accuracy in measuring physical parameters. The sensor's digital output provides real-time data, making it suitable for dynamic monitoring applications. The instrument supports a variety of communication protocols, facilitating seamless integration into existing data collection systems.

On the other hand, the CTD-304 is designed with portability in mind, making it an ideal choice for field research where space and weight are constraints. Despite its compact design, the CTD-304 does not compromise on performance. It delivers precise measurements of temperature and conductivity with a focus on ease of use and quick deployment. This model is particularly appealing to users who require a simple yet effective tool for data gathering.

Both the CTD-365 and CTD-304 are built to withstand harsh environmental conditions, with materials that resist corrosion and degradation. This durability ensures long-term functionality, reducing the need for frequent maintenance or replacements. Additionally, these sensors come with user-friendly interfaces and data logging capabilities, allowing researchers to store and retrieve data effortlessly.

In conclusion, the DCS CTD-365 and CTD-304 models exemplify advancements in underwater measurement technology. With their blend of accuracy, durability, and ease of operation, they serve as essential instruments in marine research, contributing to a deeper understanding of oceanographic conditions and ecological health. As marine exploration continues to grow in importance, these sensors play a critical role in supporting sustainable practices and environmental conservation efforts.