TXD

Transmit eXchange Data.

UDP

See User Datagram Protocol.

Universal Mobile Telecommunications Service (UMTS)

Athird-generation (3G) broadband, packet-based transmission of text, digitized voice, video, and multimedia at data rates up to 2 megabits per second (Mbps) that offers a consistent set of services to mobile computer and phone users no matter where they are located in the world. Based on the Global System for Mobile (GSM) communication standard, UMTS, endorsed by major standards bodies and manufacturers, is the planned standard for mobile users around the world and is at present still being made available. Once UMTS is fully available geographically, computer and phone users can be constantly attached to the Internet as they travel and, as they roam, have the same set of capabilities no matter where they travel to. Users will have access through a combination of terrestrial wireless and satellite transmissions. Until UMTS is fully implemented, users can have multi-mode devices that switch to the currently available technology (such as GSM 900 and 1800) where UMTS is not yet available.

Today's cellular telephone systems are mainly circuit-switched, with connections always dependent on circuit availability. A packet-switched connection, using the Internet Protocol (IP), means that a virtual connection is always available to any other end point in the network. It will also make it possible to provide new services, such as alternative billing methods (pay-per-bit, pay-per-session, flat rate, asymmetric bandwidth, and others). The higher bandwidth of UMTS also promises new services, such as video conferencing. UMTS promises to realize the Virtual Home Environment (VHE) in which a roaming user can have the same services to which the user is accustomed when at home or in the office, through a combination of transparent terrestrial and satellite connections.

The electromagnetic radiation spectrum for UMTS has been identified as frequency bands 1885-2025 MHz for future IMT-2000 systems, and 1980-2010 MHz and 2170- 2200 MHz for the satellite portion of UMTS systems.

User Datagram Protocol (UDP)

A communications protocol that offers a limited amount of service when messages are exchanged between computers in a network that uses the Internet Protocol (IP). UDP is an alternative to the Transmission Control Protocol (TCP) and, together with IP, is

2 3 8

Page 238
Image 238
Digi X4, X8, X2 manual Universal Mobile Telecommunications Service Umts, User Datagram Protocol UDP

X4, X8, X2 specifications

Digi X2 and X1 are advanced cellular IoT (Internet of Things) gateways that provide an innovative solution for industrial applications, smart cities, and remote asset management. Both devices equip users with the means to connect, monitor, and control a wide variety of assets without the limitations traditionally imposed by wired connections.

Digi X2, designed for complex IoT demands, features dual SIM slots which ensures uninterrupted connectivity through automatic failover. This makes it particularly valuable for critical applications where connectivity is non-negotiable. Additionally, the X2 is equipped with LTE-M and NB-IoT support, enabling extensive coverage in areas where other networks may struggle.

On the software side, the Digi X2 supports Digi Remote Manager, a powerful tool that allows users to monitor, manage, and deploy devices remotely. This cloud-based management system simplifies the overall management of IoT devices by providing real-time insights, easy configuration changes, and over-the-air updates, saving both time and resources.

In contrast, the Digi X1 serves as an entry-level model that balances performance with cost-effectiveness. It supports LTE connectivity, providing a reliable connection suitable for a variety of applications. The X1 also offers seamless integration with existing networks, allowing users to leverage their current infrastructure while expanding their IoT capabilities.

Both Digi X2 and X1 are designed with ruggedness in mind, making them suitable for deployment in harsh environments. They are engineered to withstand extreme temperatures and vibrations, ensuring reliability even in demanding industrial settings.

Another notable characteristic of these devices is their extensive input/output (I/O) capabilities, which enable them to interact with sensors, machines, and other types of devices. This versatility allows for a broad spectrum of applications, from monitoring temperatures in remote locations to tracking assets across geographic boundaries.

In summary, the Digi X1 and X2 provide robust, reliable, and scalable solutions for modern IoT implementations. With their advanced cellular connectivity, cloud management capabilities, and durable design, they are poised to enhance connectivity across industries, driving efficiencies and enabling smarter operations. Whether for critical industrial applications or efficient asset management, Digi's offerings are tailored to meet the diverse needs of today's IoT landscape.