User Manual

What if a VLAN tagging is applied?

VLAN tagging is a 4-byte long data immediately following the MAC source address. When tagged VLAN is applied, the Ethernet frame structure will have a little change shown as follows.

Only two fields, VLAN ID and Tag control information are different in comparison with the basic Ethernet frame. The rest fields are the same.

The first two bytes is VLAN type ID with the value of 0x8100 indicating the received frame is tagged VLAN and the next two bytes are Tag Control Information (TCI) used to provide user priority and VLAN ID, which are explained respectively in the following table.

Bits 15-13

Bit 12

Bits 11-0

User Priority 7-0, 0 is lowest priority

CFI (Canonical Format Indicator)

1:RIF field is present in the tag header

0:No RIF field is present VID (VLAN Identifier)

0x000: Null VID. No VID is present and only user priority is present.

0x001: Default VID

0xFFF: Reserved

Table 3-5

Note: RIF is used in Token Ring network to provide source routing and comprises two fields, Routing Control and Route Descriptor.

When MAC parses the received frame and finds a reserved special value 0x8100 at the location of the Length/Type field of the normal non-VLAN frame, it will interpret the received frame as a tagged VLAN frame. If this happens in a switch, the MAC will forward it, according to its priority and egress rule, to all the ports that is associated with that VID. If it happens in a network interface card, MAC will deprive of the tag header and process it in the same way as a basic normal frame. For a VLAN-enabled LAN, all involved devices must be equipped with VLAN optional function.

At operating speeds above 100 Mbps, the slotTime employed at slower speeds is inadequate to accommodate network topologies of the desired physical extent. Carrier Extension provides a means by which the slotTime can be increased to a sufficient value for the desired topologies, without increasing the minFrameSize parameter, as this would have deleterious effects. Nondata bits, referred to as extension bits, are appended to frames that are less than slotTime bits in length so that the resulting transmission is at least one slotTime in duration. Carrier Extension can be performed only if the underlying physical layer is capable of sending and receiving symbols that are readily distinguished from data symbols, as is the case in most physical layers that use a block encoding/decoding scheme.

Publication date: January, 2005

Revision A1

34

Page 38
Image 38
Edimax Technology ES-516G+ user manual Bits

ES-516G+ specifications

Edimax Technology has carved a niche for itself in the realm of networking devices, and one of its standout products is the Edimax ES-516G+. This 16-port Ethernet switch is designed to meet the demanding needs of small to medium-sized businesses and network enthusiasts.

At the core of the ES-516G+ is its capacity to support 10/100/1000 Mbps speeds across its 16 ports, enabling efficient data transmission and minimal latency for connected devices. This switch is a Layer 2 unmanaged switch, which simplifies the user experience by eliminating the need for complex configurations. Users can plug in their devices and start functioning immediately, making it an ideal option for those who may not have extensive networking knowledge.

One of the key features of the Edimax ES-516G+ is its support for Auto-MDI/MDI-X, which automatically detects the type of connection required for each port, whether it’s connecting to another switch or end devices like computers and printers. This eliminates the hassle of crossover cables and ensures seamless connectivity.

Moreover, the ES-516G+ incorporates advanced energy-saving technologies that are designed to minimize power consumption without compromising performance. This feature is particularly appealing for environmentally-conscious businesses looking to reduce their carbon footprint. It includes capabilities such as energy-efficient Ethernet (EEE), which adjusts power usage based on the link status and length of connected cables.

The switch features a compact metal housing, providing durability and a professional look suitable for any office environment. It also supports a fanless design for quiet operation, making it an excellent addition to workplaces where noise levels need to be kept to a minimum.

In terms of performance, the Edimax ES-516G+ employs store-and-forward switching technology, which helps to minimize errors by ensuring that only error-free packets are forwarded. This significantly enhances network performance and reliability.

Overall, the Edimax Technology ES-516G+ stands out as a robust, efficient, and user-friendly solution for enhancing network performance in small to medium-sized businesses. Its combination of speed, plug-and-play convenience, energy-saving features, and reliability makes it a compelling choice for users seeking to expand their network capabilities. Whether for a bustling office or a home network, the ES-516G+ is engineered to deliver a seamless, high-performance networking experience.