SECTION 5: Monitoring and outputs

5.1Fault monitoring

Self-testing circuitry continuously checks for problems that could prevent proper response. When power is applied to the Millennium II Transmitter, a micro controller automatically tests the system to ensure that it is functioning properly. During normal operation, it continuously monitors the signal from the internal sensor source. In addition, a “watchdog” timer is maintained to ensure the program is running correctly. When a system fault is detected, the Status LED will have a Red fast flash and the fault signal will output a 2.5 mA signal. The transmitter’s event log may be viewed in order to distinguish the fault condition. Refer to the Event Log menu option.

Warning The fault detection circuitry does not monitor the operation of external response equipment or external wiring to the transmitter. It is important that external equipment and wiring be checked periodically to ensure they are operational.

5.2 Relays

Standard electro-mechanical relays have Form C SPDT contacts rated 5 Amps at 30 VDC/ 250 VAC. There are four physical relays; one Fault and three Alarm relays. These relays have Normally Open and Normally Closed contacts at the output terminals. Solid State relays are Form A contacts rated 2.5 Amps at 60 VAC/DC. These relays also have one Fault and three Alarm relays.

Alarm relays are configurable and can be assigned values; the user is allowed to assign values corresponding to desired alarm conditions, under Relay 1, Relay 2 or Relay 3 for each channel. Relays can be selected to be ‘Energized’ or ‘De-energized’ and ‘Latching’ or ‘Non-latching’. See “relay assignment” option for reference.

NOTE: The fault relay output is not commonly used to imitate an automatic shutdown. The fault output indicates a potential problem with the transmitter not an alarm condition.

5.3 Analog 4-20mA

A 4-20 mA current output is used to transmit the transmitter and sensor status and fault codes to other devices. This output can be wired for isolated or non-isolated operation. A 4.0 mA output indicates normal operation; the transmitter’s output current range is 4.0 - 20.0 mA. For a full list of output current values and what they indicate, see “Sensor Status Registers, Status LEDs, Current Loop, and Display Messages”

35

MAN-0076 Rev 05 Millennium II December 07, 2012

Net Safety Monitoring Inc

Page 35
Image 35
Emerson M21, M22 user manual Monitoring and outputs, 1Fault monitoring, Relays, Analog 4-20mA

M22, M21 specifications

The Emerson M21 and M22 are advanced industrial controllers designed to enhance process automation and operational efficiency in various industries. Emerson, a leader in automation technology, introduced these models to meet the growing demands for precision, reliability, and connectivity in today’s fast-paced industrial environments.

One of the standout features of the M21 and M22 controllers is their robust processing power. They are equipped with high-speed processors that enable rapid data processing and real-time decision-making. This capability allows users to respond promptly to changing process conditions, ensuring optimal performance and minimizing downtime.

The M21 and M22 offer versatile connectivity options, supporting various communication protocols such as Ethernet, Modbus, and TCP/IP. This extensive connectivity facilitates seamless integration into existing systems, allowing for easy collaboration between devices across different platforms. Users can monitor and control processes from virtually anywhere, providing flexibility and convenience.

Scalability is another essential characteristic of the M21 and M22. These controllers can easily adapt to growing operational demands, enabling businesses to expand their automation solutions without the need for complete overhauls. Whether you're running a small system or a large, complex operation, these controllers can scale to meet your needs.

Furthermore, Emerson has incorporated advanced diagnostic and predictive maintenance features into the M21 and M22 models. These technologies leverage data analytics to predict potential failures before they occur, allowing users to take proactive measures. This not only minimizes unexpected downtime but also extends the lifespan of equipment, contributing to overall cost savings.

In terms of user interface, the M21 and M22 come with intuitive software that provides easy navigation and configuration. The interface is designed to be user-friendly, reducing the learning curve for new operators and allowing for efficient setup and management of processes.

Finally, both controllers are built with a focus on reliability and durability, making them suitable for various industrial environments, including harsh or demanding settings. Their robust design ensures consistent performance, even in challenging conditions.

In summary, the Emerson M21 and M22 controllers represent cutting-edge solutions in industrial automation, offering high processing power, flexible connectivity, scalability, advanced maintenance features, user-friendly interfaces, and robust design. Companies looking to enhance their automation capabilities will find these controllers to be valuable assets in achieving operational excellence.