HOST SOFTWARE INTERFACE

Sector Count Register

Holds the number of sectors to be sent during a Read or Write command, and the number of sectors per track during a Format command. A value of zero in this register implies a transfer of 256 sectors. A multi- sector operation decrements the Sector Count register. If an error occurs during such an operation, this register contains the remaining number of sectors to be transferred.

Sector Number Register

Holds the starting sector number for any disk operation. The register is updated as each sector is processed in a multi-sector operation.

Cylinder Number Registers

Two 8-bit Cylinder Number registers (Low and High) specify the starting cylinder for disk operation.

Device/Head Register

Used to specify the drive and head number to be operated on during any disk operations. Within the context of a Set Parameters command, this register specifies the maximum number of heads on the drive. Bit definitions follow:

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

1

LBA

1

DRV

HS3

HS2

HS1

HS0

 

 

 

 

 

 

 

 

 

LBA

 

Dr ive

Head

Head

Head

Head

 

Mode

 

Select

Select

Select

Select

Select

 

 

 

 

 

 

 

 

Select LBA Mode – Enabling this bit for commands not supported by LBA mode will abort the selected command. When set, the Task File register contents are defined as follows for the Read/Write and translate command:

CONTEN TS

LBA BITS

 

 

 

Sector Number

0

- 7

 

 

Cylinder Low

8 - 15

C ylinder High

16

- 23

 

 

 

D rive/Head

24

- 27

 

 

 

Drive Select – Set to 0 to select the master drive; set to 1 to select the slave drive.

Head Select – Specifies the binary coded address of the head to be selected.

Status Register

Contains results of the last command executed, and the drive’s status. The other seven Task File registers may be read only when bit 7 (BUSY) of the Status register is low. Reading any of the Task File registers when BUSY is high returns the value of the Status register. Reading the Status register also clears any interrupt request to the host. Bit definitions follow:

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

BUSY

D RDY

D F

D SC

D RQ

0

0

ERR

 

 

 

 

 

 

 

 

C ontroller

Device

Device

Device

D ata

 

 

Error

Busy

Ready

Fault

Seek

Request

 

 

 

 

 

 

C omplete

 

 

 

 

Controller Busy – Goes active when a command is written to the Command register, indicating controller task execution. After a command, this bit resets.

Device Ready – Indicates that the drive is ready for commands. If drive ready is not present, all commands abort. Device Fault – Indicates the drive’s detection of a write fault condition, causing all commands to abort. Device Seek Complete – Signifies a seek completion, and that the drive is on track.

Data Request – Indicates that the drive’s sector buffer is ready for data transfer.

Error – The Error bit sets when the previous command has completed with a non-recoverable error.

6 – 2

Page 37
Image 37
Maxtor 96147H6, 98196H8 specifications Conten TS LBA Bits

96147H6, 98196H8 specifications

The Maxtor 98196H8 and 96147H6 are notable hard drive models that were part of Maxtor's diverse range of storage solutions. Both models were designed to cater to various computing needs and display characteristics that made them reliable, high-performance options during their time in the market.

The Maxtor 98196H8 is a 19.1 GB hard drive that utilizes the IDE interface, which is known for its ease of use and compatibility with a broad range of motherboards. This model features a rotational speed of 5400 RPM, striking a balance between performance and power consumption. With a data transfer rate of up to 33 MB/s, the 98196H8 is capable of efficiently handling average workloads, making it suitable for everyday computing tasks such as word processing, web browsing, and media playback.

One standout characteristic of the 98196H8 is its shock protection technology, which enhances durability and reduces the risk of data loss from accidental drops. The drive uses fluid dynamic bearing (FDB) motors for quieter operation and increased reliability. Additionally, Maxtor's proprietary technology, including the SoftSonic feature, allows for reduced operational noise levels, making it an appealing choice for users who prioritize a quiet working environment.

On the other hand, the Maxtor 96147H6 boasts a slightly larger capacity of 14.7 GB and shares similar interface traits and rotational speed as the 98196H8. With a focus on providing reliable storage for desktop applications, this model leverages Maxtor's advanced data recovery solutions, which help ensure that users can restore lost data in the event of drive failures. Its high-capacity storage makes it well-suited for users dealing with larger files or needing additional space for various applications and media.

Both models are equipped with Maxtor's Error Recovery Control technology, which actively manages potential read/write errors, ensuring data integrity during storage and retrieval processes. This is especially beneficial for users handling critical information or relying on the storage for important projects.

In conclusion, the Maxtor 98196H8 and 96147H6 hard drives exemplified Maxtor's dedication to creating dependable storage solutions for consumers. With their variety of capacities, advanced technologies, and characteristics tailored to improve reliability and performance, they served many users well during their availability in the market.