Installation

3.6FOR SYSTEMS WITH AN ATA ADAPTER BOARD

To install the QuickView Serial ATA hard disk drive in an AT-compatible system without a Serial ATA connector, you need a third-party IDE-compatible adapter board.

To connect the QuickView Serial ATA drives, use the Serial ATA cable, 1 meter long or shorter. The Serial ATA cable connectors are keyed to ensure proper orientation.

3.6.1Adapter Board Installation

Carefully read the manual that accompanies your adapter board before installing it. Make sure that all the jumpers are set properly and that there are no address or signal conflicts. You must also investigate to see if your AT-compatible system contains a combination floppy and hard disk controller board. If it does, you must disable the hard disk drive controller functions on that controller board before proceeding.

Once you have disabled the hard disk drive controller functions on the floppy/hard drive controller, install the adapter board. Again, make sure that you have set all jumper straps on the adapter board to avoid addressing and signal conflicts.

3.7TECHNIQUES IN DRIVE CONFIGURATION

3.7.1Operating System Limitations

Most popular operating systems available today have additional limitations which affect the use of large capacity drives. However, these limitations can not be corrected on the BIOS and it is up to the operating system manufacturers to release improved versions to address these problems.

DOS and Windows 95 use a File Allocation Table (FAT) size of 16 bits which will only support partitions up to 2.1 GB. Windows 95 OSR2, Windows 98, and Windows ME use a FAT size of 32 bits, allowing partitions of up to 2.2 terrabytes. Windows NT, 2000, and XP use NTFS, which allows partition sizes up to 16 terrabytes.

3.8SYSTEM STARTUP AND OPERATION

Once you have installed the QuickView Serial ATA hard disk drive, and adapter board (if required) in the host system, you are ready to partition and format the drive for operation. To set up the drive correctly, follow these steps:

1.Power on the system.

2.Run the SETUP program. This is generally on a Diagnostics or Utilities disk, or within the system’s BIOS. Some system BIOS have an auto- detecting feature making SETUP unnecessary.

3.Enter the appropriate parameters.

3-12 Maxtor QuickView 400/500GB Serial ATA Hard Disk Drive

Page 27
Image 27
Maxtor manual For Systems with AN ATA Adapter Board, Adapter Board Installation, Techniques in Drive Configuration

ATA specifications

Maxtor ATA drives have played a significant role in the evolution of data storage technology, particularly during the late 20th and early 21st centuries. Known for their reliability and performance, these drives became a popular choice for consumers and businesses alike.

One of the main features of Maxtor ATA (Advanced Technology Attachment) drives is their interface. The ATA standard, which later evolved into the Parallel ATA (PATA) and Serial ATA (SATA) interfaces, allowed for the easy connection of hard drives to computers. This ensured broad compatibility across various systems, making it easier for users to upgrade their storage without facing compatibility issues.

The performance of Maxtor ATA drives was also a notable characteristic. With spinning speeds typically around 5400 RPM and 7200 RPM, these drives provided competitive read and write speeds compared to their contemporaries. The utilization of larger cache memory, often up to 8 MB or more, helped improve data transfer rates, ensuring quick access to files and applications.

Maxtor also deployed various technologies to enhance the reliability and longevity of their drives. One such innovation was the use of Shock Protection technologies, which minimized the risk of data loss due to physical shocks or impacts. This was particularly important for portable storage devices, where movement and jostling are common.

The drives were also designed with data integrity in mind. Maxtor incorporated features like S.M.A.R.T (Self-Monitoring, Analysis, and Reporting Technology) to help predict drive failures by monitoring various parameters. This proactive approach greatly assisted users in taking precautions against data loss.

Capacity-wise, Maxtor ATA drives varied significantly over the years, from a few gigabytes in the early 1990s to several terabytes by the time the brand was phased out. This scalability made Maxtor products suitable for both casual users and enterprises needing to store vast amounts of data.

In conclusion, the Maxtor ATA drives represented a significant step forward in storage technology, combining reliability, performance, and innovation. Their legacy continues to influence modern storage solutions, as many of the underlying principles and technologies have persisted into the current era of data storage. Though the brand is no longer in active development, its impact remains a noteworthy chapter in the history of computing.