Glossary

G

GIGABYTE (GB) – One billion bytes (one thousand megabytes).

GUIDE RAILS – Plastic strips attached to the sides of a disk drive mounted in an IBM AT and compatible computers so that the drive easily slides into place.

H

HALF HEIGHT – Term used to describe a drive that occupies half the vertical space of the original full size 5 1/4-inch drive. 1.625 inches high.

HARD DISK – A type of storage medium that retains data as magnetic patterns on a rigid disk, usually made of an iron oxide or alloy over a magnesium or aluminum platter. Because hard disks spin more rapidly than floppy disks, and the head flies closer to the disk, hard disks can transfer data faster and store more in the same volume.

HARD ERROR – A repeatable error in disk data that persists when the disk is reread, usually caused by defects in the media surface.

HEAD – The tiny electromagnetic coil and metal pole piece used to create and read back the magnetic patterns (write and read information) on the media.

HIGH-CAPACITY DRIVE – By industry conventions typically a drive of 1 gigabytes or more.

HIGH-LEVEL FORMATTING – Formatting performed by the operating system’s format program. Among other things, the formatting program creates the root directory and file allocation tables. See also low-level formatting.

HOME – Reference position track for recalibration of the actuator, usually the outer track (track 0).

HOST ADAPTER – A plug-in board that forms the interface between a particular type of computer system bus and the disk drive.

I

INITIALIZE – See low level formatting.

INITIATOR – A SCSI device that requests another SCSI device to perform an operation. A common example of this is a system requesting data from a drive. The system is the initiator and the drive is the target.

INTERFACE – A hardware or software protocol, contained in the electronics of the disk controller and disk drive, that manages the exchange of data between the drive and computer.

INTERLEAVE – The arrangement of sectors on a track. A 1:1 interleave arranges the sectors so that the next sector arrives at the read/write heads just as the computer is ready to access it. See also interleave factor.

INTERLEAVE FACTOR – The number of sectors that pass beneath the read/write heads before the next numbered sector arrives. When the interleave factor is 3:1, a sector is read, two pass by, and then the next is read. It would take three revolutions of the disk to access a full track of data. Maxtor drives have an interleave of 1:1, so a full track of data can be accessed within one revolution of the disk, thus offering the highest data throughput possible.

INTERNAL DRIVE – A drive mounted inside one of a computer’s drive bays (or a hard disk on a card, which is installed in one of the computer’s slots).

J

JUMPER – A tiny box that slips over two pins that protrude from a circuit board. When in place, the jumper connects the pins electrically. Some board manufacturers use Dual In-Line Package (DIP) switches instead of jumpers.

G-4 Maxtor D540X-4G

Page 50
Image 50
Maxtor D540X-4G manual Glossary

D540X-4G specifications

The Maxtor D540X-4G, introduced in the early 2000s, is a notable hard disk drive that carved a niche in the consumer and business storage market. It is part of the D540X series, known for its reliability and substantial storage capacity for its time, boasting an impressive 4GB of storage.

One of the standout features of the D540X-4G is its advanced ATA/100 interface, allowing for a high data transfer rate of up to 100 MB/s. This was a significant leap forward in performance, enabling faster access to data and improved system responsiveness. Unlike older interfaces, the ATA/100 significantly reduced bottlenecks, making it an ideal choice for users who required efficient data management.

The D540X-4G was built on a 5400 RPM spindle speed. While this wasn't as fast as some higher-end drives available at the time, it provided a balance between speed and thermal efficiency. The combination of its rotational speed and data density allowed for a commendable average seek time, which translated into quicker file access for everyday applications, such as word processing and spreadsheet management.

Another commendable attribute of the D540X-4G is its acoustic management technology, which ensured that the drive operated quietly, minimizing distraction in office environments or home setups. This was particularly beneficial for users who needed to maintain a serene working atmosphere.

In terms of durability, the D540X-4G featured a robust design with built-in shock protection. This characteristic offered an additional layer of safety for data integrity, especially vital in portable systems where exposure to movement is frequent. Maxtor also placed a focus on providing error-correction capabilities, which further enhanced data reliability.

The D540X-4G utilized a halogen-free design in its manufacturing process, reflecting an early commitment to environmental considerations, which would become increasingly important in the years to follow.

Overall, the Maxtor D540X-4G hard drive highlighted the advancements in storage technology of the time, combining ample capacity, improved speed, and reliability in a user-friendly package. It appealed to a broad spectrum of users, from everyday home computing to small business applications, making it a valuable player in the computing landscape during its era.