Product Description

￿￿￿&5DU[UVGOWCNTwo￿&TKXGdrives￿5WRRQTV￿%QPHKIWTCVKQPmay be accessed via a common interface cable, using the same range of I/O addresses. The drives have a jumper configuration as device 0 or 1 (Master/ Slave), and are selected by the drive select bit in the Device/Head register of the task file.

All Task File registers are written in parallel to both drives. The interface processor on each drive decides whether a command written to it should be executed; this depends on the type of command and which drive is selected. Only the drive selected executes the command and activates the data bus in response to host I/O reads; the drive not selected remains inactive.

A master/slave relationship exists between the two drives: device 0 is the master and device 1 the slave. When the Master is closed (factory default, figure 2-1), the drive assumes the role of master; when open, the drive acts as a slave. In single drive configurations, the Master jumper must be closed.

%CDNGCSEL￿5GNGEV(cable￿1RVKQPselect) is an optional feature per ANSI ATA specification. Drives configured in a multiple drive system are identified by CSEL’s value:

If CSEL is grounded, then the drive address is 0.

If CSEL is open, then the drive address is 1.

Figure 2-1PCBA Jumper Location and Configuration

2-6 Maxtor D540X-4G

Page 18
Image 18
Maxtor D540X-4G manual 1PCBA Jumper Location and Configuration

D540X-4G specifications

The Maxtor D540X-4G, introduced in the early 2000s, is a notable hard disk drive that carved a niche in the consumer and business storage market. It is part of the D540X series, known for its reliability and substantial storage capacity for its time, boasting an impressive 4GB of storage.

One of the standout features of the D540X-4G is its advanced ATA/100 interface, allowing for a high data transfer rate of up to 100 MB/s. This was a significant leap forward in performance, enabling faster access to data and improved system responsiveness. Unlike older interfaces, the ATA/100 significantly reduced bottlenecks, making it an ideal choice for users who required efficient data management.

The D540X-4G was built on a 5400 RPM spindle speed. While this wasn't as fast as some higher-end drives available at the time, it provided a balance between speed and thermal efficiency. The combination of its rotational speed and data density allowed for a commendable average seek time, which translated into quicker file access for everyday applications, such as word processing and spreadsheet management.

Another commendable attribute of the D540X-4G is its acoustic management technology, which ensured that the drive operated quietly, minimizing distraction in office environments or home setups. This was particularly beneficial for users who needed to maintain a serene working atmosphere.

In terms of durability, the D540X-4G featured a robust design with built-in shock protection. This characteristic offered an additional layer of safety for data integrity, especially vital in portable systems where exposure to movement is frequent. Maxtor also placed a focus on providing error-correction capabilities, which further enhanced data reliability.

The D540X-4G utilized a halogen-free design in its manufacturing process, reflecting an early commitment to environmental considerations, which would become increasingly important in the years to follow.

Overall, the Maxtor D540X-4G hard drive highlighted the advancements in storage technology of the time, combining ample capacity, improved speed, and reliability in a user-friendly package. It appealed to a broad spectrum of users, from everyday home computing to small business applications, making it a valuable player in the computing landscape during its era.