5.1.3Seek errors

A seek error is defined as a failure of the drive to position the heads to the addressed track. After detecting an initial seek error, the drive automatically performs an error recovery process. If the error recovery process fails, a seek positioning error (Error code = 15h or 02h) will be reported with a Hardware error (04h) in the Sense Key. Recoverable seek errors are specified at Less than 10 errors in 108 seeks. Unrecoverable seek errors (Sense Key = 04h) are classified as drive failures.

5.1.4Interface errors

An interface error is defined as a failure of the receiver on a port to recover the data as transmitted by the device port connected to the receiver. The error may be detected as a running disparity error, illegal code, loss of word sync, or CRC error. The total error rate for a loop of devices is the sum of the individual device error rates.

5.2Reliability and service

You can enhance the reliability of Cheetah K15.4 disc drives by ensuring that the drive receives adequate cool- ing. Section 6.0 provides temperature measurements and other information that may be used to enhance the service life of the drive. Section 8.2 provides recommended air-flow information.

5.2.1Annualized Failure Rate (AFR) and Mean Time Between Failures (MTBF)

These drives shall achieve an AFR of 0.62% (MTBF of 1,400,000 hours) when operated in an environment that ensures the HDA case temperatures do not exceed the values specified in Section 6.4.1.

Operation at case temperatures outside the specifications in Section 6.4.1 may increase the AFR (decrease the MTBF). AFR and MTBF statistics are poplulation statistics that are not relevant to individual units.

AFR and MTBF specifications are based on the following assumptions for Enterprise Storage System environ- ments:

8,760 power-on hours per year

250 average on/off cycles per year

Operating at nominal voltages

System provides adequate cooling to ensure the case temperatures specified in Section 6.4.1 are not exceeded.

5.2.2Preventive maintenance

No routine scheduled preventive maintenance is required.

5.2.3Hot plugging the drive

Inserting and removing the drive on the FC-AL will interrupt loop operation. The interruption occurs when the receiver of the next device in the loop must synchronize to a different input signal. FC error detection mecha- nisms, character sync, running disparity, word sync, and CRC are able to detect any error. Recovery is initiated based on the type of error.

The disc drive defaults to the FC-AL Monitoring state, Pass-through state, when it is powered-on by switching the power or hot plugged. The control line to an optional port bypass circuit (external to the drive), defaults to the Enable Bypass state. If the bypass circuit is present, the next device in the loop will continue to receive the output of the previous device to the newly inserted device. If the bypass circuit is not present, loop operation is temporarily disrupted until the next device starts receiving the output from the newly inserted device and regains synchronization to the new input.

16

Cheetah 15K.5 FC Product Manual, Rev. D

Page 26
Image 26
Seagate ST373455FC Reliability and service, Seek errors, Interface errors, Preventive maintenance, Hot plugging the drive

ST3146855FC, ST373455FC, ST3300655FC specifications

Seagate is renowned for its commitment to high-performance data storage solutions, and their range of enterprise drives, including the ST3300655FC, ST373455FC, and ST3146855FC, demonstrates this dedication. These models cater to businesses requiring robust, reliable, and efficient hard disk drives (HDDs) designed for demanding environments.

The ST3300655FC offers a capacity of 300 GB, making it suitable for a variety of enterprise applications. It utilizes a 15,000 RPM spindle speed, which significantly enhances its performance, delivering quick read and write times. This drive supports Serial Attached SCSI (SAS) interface, ensuring faster data transfer rates and reliability essential for critical computing environments. The dual-port connectivity of SAS allows for enhanced fault tolerance and redundancy, making the ST3300655FC ideal for data centers and enterprise storage systems.

Following closely, the ST373455FC provides a slightly larger capacity of 734 GB while maintaining the same 15,000 RPM speed. This drive's design focuses on high availability, making it an excellent choice for applications that require continuous uptime. Like its counterpart, it also benefits from the SAS interface, ensuring that data can be accessed quickly and reliably. The robust construction of the ST373455FC guarantees consistent performance under heavy workloads, an essential characteristic for enterprise use.

The ST3146855FC, with a capacity of 146 GB, offers a balance between speed and storage for enterprises that do not require the larger capacities provided by the other two models. It also operates at 15,000 RPM, benefiting from similar technological advancements as the ST3300655FC and ST373455FC. This drive maintains compatibility with existing systems, making it a versatile option for organizations looking to upgrade their storage solutions without overhauling their infrastructure.

All three models exhibit Seagate's commitment to durability and low power consumption, which is critical for reducing operational costs in data centers. They also feature advanced error recovery and data integrity technologies, ensuring that critical data remains intact and accessible. Enhanced thermal and vibration tolerance further extends the lifespan of these drives in challenging environments.

In summary, the Seagate ST3300655FC, ST373455FC, and ST3146855FC are tailored to meet the rigorous demands of enterprise environments. Their high spindle speeds, SAS connectivity, and robust designs make them exemplary choices for businesses seeking reliable and efficient storage solutions. Their distinctive features and technologies ensure that they deliver outstanding performance, data integrity, and durability, making them invaluable assets in any data-driven organization.