The Pass-through state is disabled while the drive performs self test of the FC interface. The control line for an external port bypass circuit remains in the Enable Bypass state while self test is running. If the bypass circuit is present, loop operation may continue. If the bypass circuit is not present, loop operation will be halted while the self test of the FC interface runs.

When the self test completes successfully, the control line to the bypass circuit is disabled and the drive enters the FC-AL Initializing state. The receiver on the next device in the loop must synchronize to output of the newly inserted drive.

If the self-test fails, the control line to the bypass circuit remains in the Enable Bypass state.

Note. It is the responsibility of the systems integrator to assure that no temperature, energy, voltage haz- ard, or ESD potential hazard is presented during the hot connect/disconnect operation. Discharge the static electricity from the drive carrier prior to inserting it into the system.

Caution. The drive motor must come to a complete stop prior to changing the plane of operation. This time is required to insure data integrity.

5.2.4S.M.A.R.T.

S.M.A.R.T. is an acronym for Self-Monitoring Analysis and Reporting Technology. This technology is intended to recognize conditions that indicate imminent drive failure and is designed to provide sufficient warning of a failure to allow you to back up the data before an actual failure occurs.

Note. The drive’s firmware monitors specific attributes for degradation over time but can’t predict instanta- neous drive failures.

Each monitored attribute has been selected to monitor a specific set of failure conditions in the operating per- formance of the drive and the thresholds are optimized to minimize “false” and “failed” predictions.

Controlling S.M.A.R.T.

The operating mode of S.M.A.R.T. is controlled by the DEXCPT and PERF bits on the Informational Exceptions Control mode page (1Ch). Use the DEXCPT bit to enable or disable the S.M.A.R.T. feature. Setting the DEX- CPT bit disables all S.M.A.R.T. functions. When enabled, S.M.A.R.T. collects on-line data as the drive performs normal read and write operations. When the PERF bit is set, the drive is considered to be in “On-line Mode Only” and will not perform off-line functions.

You can measure off-line attributes and force the drive to save the data by using the Rezero Unit command. Forcing S.M.A.R.T. resets the timer so that the next scheduled interrupt is in two hours.

You can interrogate the drive through the host to determine the time remaining before the next scheduled mea- surement and data logging process occurs. To accomplish this, issue a Log Sense command to log page 0x3E. This allows you to control when S.M.A.R.T. interruptions occur. Forcing S.M.A.R.T. with the RTZ command resets the timer.

Performance impact

S.M.A.R.T. attribute data is saved to the disc so that the events that caused a predictive failure can be recre- ated. The drive measures and saves parameters once every two hours subject to an idle period on the FC-AL bus. The process of measuring off-line attribute data and saving data to the disc is uninterruptable. The maxi- mum on-line only processing delay is summarized below:

Maximum processing delay

 

 

On-line only delay

Fully-enabled delay

 

DEXCPT = 0, PERF = 1

DEXCPT = 0, PERF = 0

S.M.A.R.T. delay times

42 milliseconds

163 milliseconds

Cheetah 15K.5 FC Product Manual, Rev. D

17

Page 27
Image 27
Seagate ST3146855FC, ST3300655FC, ST373455FC manual 4 S.M.A.R.T, Controlling S.M.A.R.T, Performance impact, Milliseconds

ST3146855FC, ST373455FC, ST3300655FC specifications

Seagate is renowned for its commitment to high-performance data storage solutions, and their range of enterprise drives, including the ST3300655FC, ST373455FC, and ST3146855FC, demonstrates this dedication. These models cater to businesses requiring robust, reliable, and efficient hard disk drives (HDDs) designed for demanding environments.

The ST3300655FC offers a capacity of 300 GB, making it suitable for a variety of enterprise applications. It utilizes a 15,000 RPM spindle speed, which significantly enhances its performance, delivering quick read and write times. This drive supports Serial Attached SCSI (SAS) interface, ensuring faster data transfer rates and reliability essential for critical computing environments. The dual-port connectivity of SAS allows for enhanced fault tolerance and redundancy, making the ST3300655FC ideal for data centers and enterprise storage systems.

Following closely, the ST373455FC provides a slightly larger capacity of 734 GB while maintaining the same 15,000 RPM speed. This drive's design focuses on high availability, making it an excellent choice for applications that require continuous uptime. Like its counterpart, it also benefits from the SAS interface, ensuring that data can be accessed quickly and reliably. The robust construction of the ST373455FC guarantees consistent performance under heavy workloads, an essential characteristic for enterprise use.

The ST3146855FC, with a capacity of 146 GB, offers a balance between speed and storage for enterprises that do not require the larger capacities provided by the other two models. It also operates at 15,000 RPM, benefiting from similar technological advancements as the ST3300655FC and ST373455FC. This drive maintains compatibility with existing systems, making it a versatile option for organizations looking to upgrade their storage solutions without overhauling their infrastructure.

All three models exhibit Seagate's commitment to durability and low power consumption, which is critical for reducing operational costs in data centers. They also feature advanced error recovery and data integrity technologies, ensuring that critical data remains intact and accessible. Enhanced thermal and vibration tolerance further extends the lifespan of these drives in challenging environments.

In summary, the Seagate ST3300655FC, ST373455FC, and ST3146855FC are tailored to meet the rigorous demands of enterprise environments. Their high spindle speeds, SAS connectivity, and robust designs make them exemplary choices for businesses seeking reliable and efficient storage solutions. Their distinctive features and technologies ensure that they deliver outstanding performance, data integrity, and durability, making them invaluable assets in any data-driven organization.