10.8Protection Information (PI)

Protection Information is intended as a standardized approach to system level LRC traditionally provided by systems using 520 byte formatted LBAs. Drives formatted with PI information provide the same, common LBA count (i.e. same capacity point) as non-PI formatted drives. Sequential performance of a PI drive will be reduced by approximately 1.56% due to the extra overhead of PI being transferred from the media that is not calculated as part of the data transferred to the host. To determine the full transfer rate of a PI drive, transfers should be calculated by adding the 8 extra bytes of PI to the transferred LBA length, i.e. 512 + 8 = 520. PI for- matted drives are physically formatted to 520 byte sectors that store 512 bytes of customer data with 8 bytes of Protection Information appended to it. The advantage of PI is that the Protection Information bits can be man- aged at the HBA and HBA driver level. Allowing a system that typically does not support 520 LBA formats to integrate this level of protection.

Protection Information is valid with any supported LBA size. 512 LBA size is used here as common example.

10.8.1Levels of PI

There are 4 types of Protection Information.

Type 0 - Describes a drive that is not formatted with PI information bytes. This allows for legacy support in non- PI systems.

Type 1 - Provides support of PI protection using 10 and 16 byte commands. The RDPROTECT and WRTPRO- TECT bits allow for checking control through the CDB. Eight bytes of Protection Information are transmitted at LBA boundaries across the interface if RDPROTECT and WRTPROTECT bits are nonzero values. Type 1 does not allow the use of 32 byte commands.

Type 2 - Provides checking control and additional expected fields within the 32 byte CDBs. Eight bytes of Pro- tection Information are transmitted at LBA boundaries across the interface if RDPROTECT and WRTPRO- TECT bits are nonzero values. Type 2 does allow the use of 10 and 16 byte commands with zero values in the RDPROTECT and WRTPROTECT fields. The drive will generate 8 bytes (e.g.0xFFFF) 8 bytes of Protection Information to be stored on the media, but the 8 bytes will not be transferred to the host during a read com- mand.

Type 3 - Seagate products do not support Type 3.

10.8.2Setting and determining the current Type Level

A drive is initialized to a type of PI by using the format command on a PI capable drive. Once a drive is format- ted to a PI Type, it may be queried by a Read Capacity (16) command to report the PI type which it is currently formatted to. PI Types cannot coexist on a single drive. A drive can only be formatted to a single PI Type. It can be changed at anytime to a new Type but requires a low level format which destroys all existing data on the drive. No other vehicle for changing the PI type is provided by the T10 SBC3 specification.

Type 1

PI format CDB command: 04

90 00 00 00 00,

Write Buffer: 00 A0 00 00

Type 2

PI format CDB command: 04

D0 00 00 00 00,

Write Buffer: 00 A0 00 00

10.8.3Identifying a Protection Information drive

The Standard Inquiry provides a bit to indicate if PI is support by the drive. Vital Product Descriptor (VPD) page 0x86 provides bits to indicate the PI Types supported and which PI fields the drive supports checking.

Note. For further details with respect to PI, please refer to SCSI Block Commands - 3 (SBC-3) Draft Stan- dard documentation.

Savvio 10K.5 SAS Product Manual, Rev. D

51

Page 59
Image 59
Seagate ST9300405SS, ST9900605SS Protection Information PI, Levels of PI, Setting and determining the current Type Level

ST9600005SS, ST9600205SS, ST9300505SS, ST9300605SS, ST9300405SS specifications

Seagate has long been a prominent player in the storage solutions market, offering a range of hard drives that cater to various needs and applications. Among its extensive lineup, the Seagate ST9600105SS, ST9450405SS, ST9450305SS, ST9900605SS, and ST9900805SS stand out due to their unique features and robust performance, making them suitable for both personal and professional use.

The Seagate ST9600105SS is a 2.5-inch 600GB SAS hard drive that delivers exceptional reliability and performance. With a rotational speed of 10,000 RPM, this drive ensures quick data access through its enhanced data transfer rate. It utilizes a SAS 6Gb/s interface, allowing for fast and efficient data management in enterprise environments. The drive is designed with Seagate's AgileArray technology, which optimizes drive reliability for multi-drive environments, ensuring that users benefit from reduced downtime.

Similarly, the ST9450405SS and ST9450305SS are also 2.5-inch SAS drives, offering capacities of 450GB and 300GB, respectively. Both models feature a 10,000 RPM speed and a 6Gb/s SAS interface, making them ideal for use in data centers and business-critical applications. The ST9450405SS has enhanced power efficiency, aiding in lowering operational costs for enterprises. Both drives incorporate Seagate's advanced error recovery controls, which help maintain data integrity under varying workloads.

On the larger capacity side, the Seagate ST9900605SS and ST9900805SS drives provide even more storage options. Offering 600GB and 800GB capacities, respectively, these drives are designed for high-performance computing environments. They also spin at 10,000 RPM and support the 6Gb/s SAS interface. The ST9900805SS, in particular, is noted for its advanced performance in transactional workloads, making it suitable for database storage, virtualization, and analytics.

All five models feature Seagate’s innovative technologies, including firmware enhancements for improved error correction and reliability. They are also built to operate in a variety of environments, offering robust vibration tolerance.

In summary, the Seagate ST9600105SS, ST9450405SS, ST9450305SS, ST9900605SS, and ST9900805SS represent some of the best storage solutions for high-demand applications. With their emphasis on performance, reliability, and energy efficiency, these drives are engineered to meet the challenges of modern data storage needs, ensuring organizations can rely on them for their critical operations.