5.5.1Caching write data

Write caching is a write operation by the drive that makes use of a drive buffer storage area where the data to be written to the medium is stored while the drive performs the Write command.

If read caching is enabled (RCD=0), then data written to the medium is retained in the cache to be made avail- able for future read cache hits. The same buffer space and segmentation is used as set up for read functions. The buffer segmentation scheme is set up or changed independently, having nothing to do with the state of RCD. When a write command is issued, if RCD=0, the cache is first checked to see if any logical blocks that are to be written are already stored in the cache from a previous read or write command. If there are, the respective cache segments are cleared. The new data is cached for subsequent Read commands.

If the number of write data logical blocks exceed the size of the segment being written into, when the end of the segment is reached, the data is written into the beginning of the same cache segment, overwriting the data that was written there at the beginning of the operation; however, the drive does not overwrite data that has not yet been written to the medium.

If write caching is enabled (WCE=1), then the drive may return Good status on a write command after the data has been transferred into the cache, but before the data has been written to the medium. If an error occurs while writing the data to the medium, and Good status has already been returned, a deferred error will be gen- erated.

The Synchronize Cache command may be used to force the drive to write all cached write data to the medium. Upon completion of a Synchronize Cache command, all data received from previous write commands will have been written to the medium. Tables 11, 12, 13 and 14 show the mode default settings for the drive.

5.5.2Prefetch operation

If the Prefetch feature is enabled, data in contiguous logical blocks on the disc immediately beyond that which was requested by a Read command are retrieved and stored in the buffer for immediate transfer from the buf- fer to the host on subsequent Read commands that request those logical blocks (this is true even if cache operation is disabled). Though the prefetch operation uses the buffer as a cache, finding the requested data in the buffer is a prefetch hit, not a cache operation hit.

To enable Prefetch, use Mode Select page 08h, byte 12, bit 5 (Disable Read Ahead - DRA bit). DRA bit = 0 enables prefetch.

The drive does not use the Max Prefetch field (bytes 8 and 9) or the Prefetch Ceiling field (bytes 10 and 11).

When prefetch (read look-ahead) is enabled (enabled by DRA = 0), the drive enables prefetch of contiguous blocks from the disc when it senses that a prefetch hit will likely occur. The drive disables prefetch when it decides that a prefetch hit is not likely to occur.

12

Savvio 10K.5 SAS Product Manual, Rev. D

Page 20
Image 20
Seagate ST9450205SS, ST9900605SS, ST9900805SS, ST9900705SS, ST9600005SS, ST9600105SS Caching write data, Prefetch operation

ST9600005SS, ST9600205SS, ST9300505SS, ST9300605SS, ST9300405SS specifications

Seagate has long been a prominent player in the storage solutions market, offering a range of hard drives that cater to various needs and applications. Among its extensive lineup, the Seagate ST9600105SS, ST9450405SS, ST9450305SS, ST9900605SS, and ST9900805SS stand out due to their unique features and robust performance, making them suitable for both personal and professional use.

The Seagate ST9600105SS is a 2.5-inch 600GB SAS hard drive that delivers exceptional reliability and performance. With a rotational speed of 10,000 RPM, this drive ensures quick data access through its enhanced data transfer rate. It utilizes a SAS 6Gb/s interface, allowing for fast and efficient data management in enterprise environments. The drive is designed with Seagate's AgileArray technology, which optimizes drive reliability for multi-drive environments, ensuring that users benefit from reduced downtime.

Similarly, the ST9450405SS and ST9450305SS are also 2.5-inch SAS drives, offering capacities of 450GB and 300GB, respectively. Both models feature a 10,000 RPM speed and a 6Gb/s SAS interface, making them ideal for use in data centers and business-critical applications. The ST9450405SS has enhanced power efficiency, aiding in lowering operational costs for enterprises. Both drives incorporate Seagate's advanced error recovery controls, which help maintain data integrity under varying workloads.

On the larger capacity side, the Seagate ST9900605SS and ST9900805SS drives provide even more storage options. Offering 600GB and 800GB capacities, respectively, these drives are designed for high-performance computing environments. They also spin at 10,000 RPM and support the 6Gb/s SAS interface. The ST9900805SS, in particular, is noted for its advanced performance in transactional workloads, making it suitable for database storage, virtualization, and analytics.

All five models feature Seagate’s innovative technologies, including firmware enhancements for improved error correction and reliability. They are also built to operate in a variety of environments, offering robust vibration tolerance.

In summary, the Seagate ST9600105SS, ST9450405SS, ST9450305SS, ST9900605SS, and ST9900805SS represent some of the best storage solutions for high-demand applications. With their emphasis on performance, reliability, and energy efficiency, these drives are engineered to meet the challenges of modern data storage needs, ensuring organizations can rely on them for their critical operations.