Installation checks and functional tests

Heavy weight.

Can result in death, serious injury or property damage.

Observe all handling instructions in this instruction manual to prevent tipping or dropping of equipment.

Removal from cell in indoor switchgear if not on raised pad and Shelter-Clad outdoor switchgear

After performing the spring discharge check (with control power de-energized), remove the circuit breaker from its switchgear cubicle.

1.Insert the racking crank on the racking screw on the front of the circuit breaker cell, and push in (refer to "Racking crank engagement procedure" on page 11). This action operates the racking-interlock latch. Figure 2 shows circuit breaker racking.

2.Rotate the racking crank counterclockwise until the circuit breaker is in the DISCONNECT position, as indicated on the racking mechanism.

3.Move the circuit breaker release latch (on the floor of the cell near the right side of the circuit breaker) to the left and pull the circuit breaker out from the DISCONNECT position. The circuit breaker can now be removed from the cubicle.

4.The circuit breaker is now free to be rolled out onto the floor using the handles on the front. The wheels of the circuit breaker are at floor level (unless the switchgear is installed on a raised pad), and one person can normally handle the unit.

Removal from cell in outdoor non-walk- in enclosures or for indoor switchgear installed on a raised pad

Removal of the circuit breaker from a non- walk-in outdoor-switchgear assembly is similar to removal of a circuit breaker at floor level with several additional steps.

Figure 3 shows the two extension rails inserted into the fixed rails within the cell. The rails engage locking pins in the fixed rails to secure them in position. The procedure for removal of a circuit breaker not located at floor level is:

1.Close the circuit-breaker compartment door and secure all latches.

2.Insert the racking crank onto the racking screw on the front of the circuit-breaker cell, and push in (refer to "Racking crank engagement procedure" on page 11). This action operates the racking-interlock latch.

3.Rotate the racking crank counterclockwise until the circuit breaker is in the DISCONNECT position.

4.Open the circuit-breaker compartment door and insert the two extension rails into the fixed rails. Be sure the extension rails are properly secured in place.

10

Page 10
Image 10
Siemens 38-3AH3 38 kV instruction manual Installation checks and functional tests

38-3AH3 38 kV specifications

The Siemens 38-3AH3 is a high-voltage circuit breaker designed for medium voltage applications, particularly in substations and industrial environments. This device operates at a voltage level of 38 kV, showcasing Siemens' commitment to innovation and reliability in electrical engineering.

One of the main features of the Siemens 38-3AH3 is its advanced interruption technology, which employs the proven hybrid design combining both gas-insulated and air-insulated technologies. This hybrid approach not only enhances the breaker's performance and reliability but also minimizes its footprint, making it an ideal choice for space-constrained environments.

The Siemens 38-3AH3 uses vacuum interruption technology, allowing for efficient switching with minimal wear and tear. The vacuum interrupters are highly reliable and provide excellent performance under various operating conditions. This technology ensures that the circuit breaker can handle short circuits and overloads effectively, thus protecting the entire electrical system.

Additionally, the Siemens 38-3AH3 incorporates intelligent monitoring systems. These digital technologies provide real-time data on breaker status, operational performance, and maintenance needs. This predictive maintenance capability helps operators to identify potential issues before they develop into significant problems, ultimately leading to reduced downtime and maintenance costs.

Another notable characteristic of the Siemens 38-3AH3 is its high insulation strength. Thanks to its robust design and development, this circuit breaker can withstand adverse environmental conditions, making it suitable for use in diverse geographical locations and climates. Its components are designed to resist contamination and corrosion, ensuring long-term reliability.

The Siemens 38-3AH3 also offers enhanced safety features. It includes protective relays and automatic fault detection systems that isolate faults quickly, preventing damage to downstream equipment. Furthermore, the design allows for easy maintenance, with components that are accessible without the need for extensive disassembly.

In summary, the Siemens 38-3AH3 38 kV circuit breaker is a leading solution in high-voltage protection and control, characterized by its advanced interruption technology, integrated monitoring systems, high insulation strength, and user-friendly maintenance features. Its innovative design and engineering make it a trusted choice for utilities and industrial facilities aiming to enhance the reliability and safety of their electrical systems.