Siemens 38-3AH3 38 kV instruction manual Closing, Use of manual-spring operation crank

Models: 38-3AH3 38 kV

1 68
Download 68 pages 27.06 Kb
Page 22
Image 22

Vacuum interrupter/ operator

50.1 53.0

50.0

55.0

54.0

 

50.0- Hand crank

50.1- Manual-spring charging port

53.0- Manual close button

54.0- Manual open (trip) button

55.0- CHARGED/DISCHARGED indicator

Figure 16: Use of manual-spring operation crank

When the closing spring has been fully charged, the crank actuates the linkage (55.1) via control lever (55.2) for the closing-spring CHARGED indicator (55.0), and actuates the limit switches (50.4.1) for interrupting the motor supply.

At the same time, the lever (62.5) at the other end of the charging shaft is securely locked by the close-latch pawl (62.5.2).

When the closing spring is being charged, cam disc (62.3) follows along, and it is brought into position for closing when the closing spring is fully charged.

Closing

Refer to Figure 15: Stored-energy operating mechanism on page 20, Figure

16:Use of manual-spring operating crank on page 22, Figure 17: Operating mechanism section diagram (drawout trip- free linkage shown) mechanism OPEN, closing spring DISCHARGED on page 24, Figure 18: Operating mechanism section diagram (drawout trip-free linkage shown) mechanism OPEN, closing spring DISCHARGED on page 25, Figure 19: Operating mechanism section diagram (drawout trip-free linkage shown) mechanism CLOSED, closing spring DISCHARGED on page 26 and Figure 20: Operating mechanism section diagram (drawout trip-free linkage shown) mechanism CLOSED, closing spring CHARGED on page 27.

If the circuit breaker is to be closed locally, the closing spring is released by pressing the close button (53.0). In the case of electrical control, the spring-release coil 52SRC (53.1) unlatches the closing spring.

As the closing spring discharges, the charging shaft is turned by crank (62.2). The cam disc (62.3) at the other end of the charging shaft actuates the drive lever (62.6), with the result that the jack shaft (63.0) is turned by lever (63.5) via the coupling rod (62.8).

At the same time, the levers (63.1), (63.5) and (63.7) fixed on the jack shaft operate the three-insulated couplers for the circuit- breaker poles.

Lever (63.7) changes the OPEN/CLOSED indicator (58.0) to CLOSED. Lever (63.5) charges the tripping spring (64.0) during closing, and the circuit breaker is latched in the CLOSED position by lever (64.3) with pawl roller (64.3.1) and by pawl (64.2). Lever (63.1) actuates the auxiliary switch through the linkage (68.1).

The crank (62.2) on the charging shaft moves the linkage (55.1) by acting on the control lever (55.2). The closing-spring CHARGED indication (55.0) is thus canceled and, the limit switches (50.4.1) switch in the control supply to cause the closing spring to recharge immediately.

22

Page 22
Image 22
Siemens 38-3AH3 38 kV instruction manual Closing, Use of manual-spring operation crank

38-3AH3 38 kV specifications

The Siemens 38-3AH3 is a high-voltage circuit breaker designed for medium voltage applications, particularly in substations and industrial environments. This device operates at a voltage level of 38 kV, showcasing Siemens' commitment to innovation and reliability in electrical engineering.

One of the main features of the Siemens 38-3AH3 is its advanced interruption technology, which employs the proven hybrid design combining both gas-insulated and air-insulated technologies. This hybrid approach not only enhances the breaker's performance and reliability but also minimizes its footprint, making it an ideal choice for space-constrained environments.

The Siemens 38-3AH3 uses vacuum interruption technology, allowing for efficient switching with minimal wear and tear. The vacuum interrupters are highly reliable and provide excellent performance under various operating conditions. This technology ensures that the circuit breaker can handle short circuits and overloads effectively, thus protecting the entire electrical system.

Additionally, the Siemens 38-3AH3 incorporates intelligent monitoring systems. These digital technologies provide real-time data on breaker status, operational performance, and maintenance needs. This predictive maintenance capability helps operators to identify potential issues before they develop into significant problems, ultimately leading to reduced downtime and maintenance costs.

Another notable characteristic of the Siemens 38-3AH3 is its high insulation strength. Thanks to its robust design and development, this circuit breaker can withstand adverse environmental conditions, making it suitable for use in diverse geographical locations and climates. Its components are designed to resist contamination and corrosion, ensuring long-term reliability.

The Siemens 38-3AH3 also offers enhanced safety features. It includes protective relays and automatic fault detection systems that isolate faults quickly, preventing damage to downstream equipment. Furthermore, the design allows for easy maintenance, with components that are accessible without the need for extensive disassembly.

In summary, the Siemens 38-3AH3 38 kV circuit breaker is a leading solution in high-voltage protection and control, characterized by its advanced interruption technology, integrated monitoring systems, high insulation strength, and user-friendly maintenance features. Its innovative design and engineering make it a trusted choice for utilities and industrial facilities aiming to enhance the reliability and safety of their electrical systems.