AR-B1474 User¡¦s Guide

5.3 JUMPER SETTING

Before installing the memory into memory sockets MEM1 through MEM3, you have to configure the memory type which will be used (ROM/RAM) on the AR-B1474. Each socket is equipped with a jumper to select the memory type.

You can configure the AR-B1474 as a (FLASH) EPROM disk (ROM only), a SRAM disk (SRAM only) or a combination of (FLASH) EPROM and SRAM disk.

It is not necessary to insert memory chips into all of the sockets. The number of SRAM chips required depends on your RAM disk capacity. The number of EPROM chips required depends on the total size of files that you plan to copy onto the ROM disk and whether or not it will be bootable.

Insert the first memory chip into MEM1 if you are going to configure it as a ROM or SRAM disk. If you use a combination of ROM and RAM, then insert the (FLASH) EPROM chip starting with the MEM1, and insert the SRAM chips starting from the first socket which is configured as SRAM.

M1:is used to configure the memory type of MEM1

M2:is used to configure the memory type of MEM2

M3:is used to configure the memory type of MEM3

CAUTION: When the power is turned off, please note the following precautions.

1.If your data has been stored in the SRAM disk, do not change the jumper position or data will be lost.

2.Make sure jumpers are set properly. If you mistakenly set the jumpers for SRAM and you have EPROM or FLASH installed, the EPROM or FLASH will drain the battery’ s power.

5.3.1SSD BIOS Select (JP7)

JP7

1

2

3

1

2

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disable Enable (Factory preset)

Figure 5-3 JP7: SSD BIOS Select

5-5

Page 43
Image 43
Sony 486DX, DX4, AR-B1474 manual Jumper Setting, SSD Bios Select JP7

DX4, AR-B1474, 486DX specifications

The Sony 486DX, AR-B1474, and DX4 are notable examples of advanced computing technologies from the early to mid-1990s, a time when personal computers were rapidly evolving to meet increasing user demands. These systems played a pivotal role in shaping the landscape of modern computing.

The Sony 486DX is built around the popular Intel 80486 microprocessor, which was a significant step up from its predecessor, the 386. The 486DX featured a 32-bit architecture and introduced integrated cache memory, which greatly enhanced data processing speeds and overall system performance. Operating at clock speeds typically ranging from 25 to 100 MHz, the 486DX models provided a solid foundation for running more sophisticated software applications and advanced games of the era.

Accompanying the 486DX was the AR-B1474 motherboard, designed to maximize the potential of the 486 architecture. This motherboard featured support for up to 512 KB of level 2 cache memory, further boosting performance for data-heavy tasks. The AR-B1474 also included extensive connectivity options, with ISA slots for legacy devices, as well as support for EISA, making it compatible with a wide range of hardware peripherals. This versatility made the AR-B1474 a popular choice among builders of custom desktop PCs during its time.

The DX4, another significant milestone, built upon the 486 architecture by introducing a clock-doubling technique. By effectively allowing the processor to perform operations at up to three times its base clock speed (typically 75 or 100 MHz), the DX4 could handle even more demanding applications, thereby providing users with significant performance improvements without requiring a complete overhaul of their systems.

Both the 486DX and DX4 processors facilitated advancements in multimedia capabilities, with improved graphics rendering and audio performance that supported CD-ROMs and early gaming technologies. This made them particularly appealing to consumers looking for a versatile machine for both work and entertainment.

Overall, the combination of the Sony 486DX, AR-B1474 motherboard, and DX4 processor exemplifies a significant chapter in computing history, showcasing how hardware advancements seamlessly integrated with user needs for performance and flexibility. As these technologies laid the groundwork for future innovations, they remain noteworthy for their contributions to the evolution of personal computing.