Chapter 4: AMI BIOS

CPU Temperature

The CPU thermal technology that reports absolute temperatures (Celsius/Fahr- enheit) has been upgraded to a more advanced feature by Intel in its newer processors. The basic concept is each CPU is embedded by unique temperature information that the motherboard can read. This ‘Temperature Threshold’ or ‘Tem- perature Tolerance’ has been assigned at the factory and is the baseline on which the motherboard takes action during different CPU temperature conditions (i.e., by increasing CPU Fan speed, triggering the Overheat Alarm, etc). Since CPUs can have different ‘Temperature Tolerances’, the installed CPU can now send informa- tion to the motherboard what its ‘Temperature Tolerance’ is, and not the other way around. This results in better CPU thermal management.

Supermicro has leveraged this feature by assigning a temperature status to certain thermal conditions in the processor (Low, Medium and High). This makes it easier for the user to understand the CPU’s temperature status, rather than by just simply seeing a temperature reading (i.e., 25oC). The CPU Temperature feature will display the CPU temperature status as detected by the BIOS:

Low – This level is considered as the ‘normal’ operating state. The CPU temperature is well below the CPU ‘Temperature Tolerance’. The motherboard fans and CPU will run normally as configured in the BIOS (Fan Speed Control).

User intervention: No action required.

Medium – The processor is running warmer. This is a ‘precautionary’ level and generally means that there may be factors contributing to this condition, but the CPU is still within its normal operating state and below the CPU ‘Temperature Tolerance’. The motherboard fans and CPU will run normally as configured in the BIOS. The fans may adjust to a faster speed depending on the Fan Speed Control settings.

User intervention: No action is required. However, consider checking the CPU fans and the chassis ventilation for blockage.

High – The processor is running hot. This is a ‘caution’ level since the CPU’s ‘Tem- perature Tolerance’ has been reached (or has been exceeded) and may activate an overheat alarm.

User intervention: If the system buzzer and Overheat LED has activated, take action immediately by checking the system fans, chassis ventilation and room temperature to correct any problems.

Notes: 1. The system may shut down if it continues for a long period to prevent damage to the CPU.

2.The information provided above is for your reference only. For more information on thermal management, please refer to Intel’s Web site at www.Intel.com.

4-17

Page 75
Image 75
SUPER MICRO Computer X8DA3 user manual CPU Temperature

X8DA3 specifications

Super Micro Computer, also known as Supermicro, is a prominent player in the world of computing hardware, particularly known for its high-performance server solutions. One of their noteworthy offerings is the X8DA3 motherboard, which is designed for dual-processor systems and caters to various applications, including data centers, cloud computing, and enterprise-level operations.

The Supermicro X8DA3 motherboard supports Intel's Nehalem and Westmere architectures, accommodating two LGA 1366 sockets for Intel Xeon processors. This setup allows for impressive computational power and scalability. The motherboard can support up to 192GB of DDR3 RAM across six DIMM slots, enabling high memory bandwidth essential for memory-intensive applications.

One of the standout features of the X8DA3 is its robust I/O options. It comes equipped with six SATA II ports and two SAS ports, allowing for flexible storage configurations. Additionally, the board supports a range of RAID levels, including 0, 1, 5, and 10, providing data redundancy and performance optimization. For enhanced connectivity, the motherboard includes dual Gigabit Ethernet ports, ensuring reliable networking capabilities which are crucial for server environments.

In terms of expandability, the X8DA3 features multiple PCIe slots, providing users with the ability to add various expansion cards such as graphics cards, network cards, or additional storage controllers. This flexibility allows companies to tailor their server setups according to specific needs.

Power management is another critical aspect of the X8DA3. It supports ATX power supplies and features advanced power-saving technologies that help in reducing overall energy consumption. This ecological consideration is particularly important for organizations looking to minimize their carbon footprint while maintaining optimal performance.

For thermal management, Supermicro incorporates a design that allows for efficient airflow and cooling, which is crucial for maintaining system stability during intensive workloads. The motherboard is also equipped with multiple temperature sensors that provide real-time monitoring, ensuring components operate within safe thermal levels.

Overall, the Super Micro Computer X8DA3 motherboard is a reliable and high-performance choice for businesses requiring a versatile and powerful computing platform. Its support for dual processors, extensive memory options, advanced storage capabilities, and solid expandability make it an attractive option for enterprise applications in today’s computationally demanding environments.