Celestron C8-NGT, C10-N manual Declination Drift Method of Polar Alignment

Page 36

Declination Drift Method of Polar Alignment

This method of polar alignment allows you to get the most accurate alignment on the celestial pole and is required if you want to do long exposure deep-sky astrophotography through the telescope. The declination drift method requires that you monitor the drift of selected stars. The drift of each star tells you how far away the polar axis is pointing from the true celestial pole and in what direction. Although declination drift is simple and straight-forward, it requires a great deal of time and patience to complete when first attempted. The declination drift method should be done after any one of the previously mentioned methods has been completed.

To perform the declination drift method you need to choose two bright stars. One should be near the eastern horizon and one due south near the meridian. Both stars should be near the celestial equator (i.e., 0° declination). You will monitor the drift of each star one at a time and in declination only. While monitoring a star on the meridian, any misalignment in the east-west direction is revealed. While monitoring a star near the east/west horizon, any misalignment in the north-south direction is revealed. It is helpful to have an illuminated reticle eyepiece to help you recognize any drift. For very close alignment, a Barlow lens is also recommended since it increases the magnification and reveals any drift faster. When looking due south, insert the diagonal so the eyepiece points straight up. Insert the cross hair eyepiece and align the cross hairs so that one is parallel to the declination axis and the other is parallel to the right ascension axis. Move your telescope manually in R.A. and DEC to check parallelism.

First, choose your star near where the celestial equator and the meridian meet. The star should be approximately within 1/2 an hour of the meridian and within five degrees of the celestial equator. Center the star in the field of your telescope and monitor the drift in declination.

If the star drifts south, the polar axis is too far east.

If the star drifts north, the polar axis is too far west.

Make the appropriate adjustments to the polar axis to eliminate any drift. Once you have eliminated all the drift, move to the star near the eastern horizon. The star should be 20 degrees above the horizon and within five degrees of the celestial equator.

If the star drifts south, the polar axis is too low.

If the star drifts north, the polar axis is too high.

Again, make the appropriate adjustments to the polar axis to eliminate any drift. Unfortunately, the latter adjustments interact with the prior adjustments ever so slightly. So, repeat the process again to improve the accuracy checking both axes for minimal drift. Once the drift has been eliminated, the telescope is very accurately aligned. You can now do prime focus deep-sky astrophotography for long periods.

NOTE: If the eastern horizon is blocked, you may choose a star near the western horizon, but you must reverse the polar high/low error directions. Also, if using this method in the southern hemisphere, the direction of drift is reversed for both R.A. and DEC.

36

Image 36 Contents
Advanced Series Advanced Series GT Precise GoTo Scope Setup Features Telescope Maintenance Page Advanced Series Newtonian Advanced Series GT Newtonian Setting up the Tripod Attaching the Equatorial MountInstalling the Counterweight Bar Attaching the Center Leg BraceInstalling the Counterweight Attaching the Hand Control Holder Advanced GT Models OnlyAttaching the Telescope Tube to the Mount Installing the Finderscope Installing the EyepiecesTelescope Balancing the Tube in R.A Telescope Tube CompletelyAdjusting the Mount Adjusting the Mount in AltitudePowering the Telescope Attaching the Declination Cable For GT Models OnlyAdvanced GT Hand Control Hand Control Operation Alignment Procedures Startup ProcedureAuto Align Auto Three-Star AlignQuick-Align Last AlignmentRe-Alignment Object Catalog Selecting an ObjectTour Mode Setup Procedures Nine available slew speedsIdentify Scope Setup Features Observing Tip Helpful Hint Utility Features Helpful Hint Advanced GT Image Orientation Focusing Aligning the FinderscopeCalculating Magnification Determining Field of View General Observing Hints Celestial Coordinate System Motion of the Stars Latitude Scales Pointing at PolarisFinding the North Celestial Pole Declination Drift Method of Polar Alignment Observing the Moon Lunar Observing HintsObserving the Planets Observing the SunSolar Observing Hints Observing Deep Sky ObjectsSeeing Conditions TransparencyPage Piggyback Short Exposure Prime Focus Photography Terrestrial Photography MeteringReducing Vibration Auto Guiding Care and Cleaning of the Optics CollimationAligning the Secondary Mirror Aligning the Primary Mirror Night Time Star Collimating Page Page Page Page Appendix a Technical Specifications Appendix B Glossary of Terms Page Eclipsing or obscuring the brightness of the star Appendix C Longitudes Latitudes Georgia Minnesota Rhode Island Canada Appendix D RS-232 Connection Additional RS232 Commands Reset The Position Of Azm Or AltAppendix E Maps of Time Zones Page Page Page Page Page Page Page Celestron TWO Year Warranty
Related manuals
Manual 71 pages 692 b