A S T R O N O M Y B A S I C S
The Celestial Coordinate System
The following section deals with observational astronomy in general. It in- cludes information on the night sky, polar alignment, and using your telescope for astronomical observing.
In order to help find objects in the sky, astronomers use a celestial coordinate system which is similar to our geographical coordinate system here on Earth. The celestial coordinate system has poles, lines of longitude and latitude, and an equator. For the most part, these remain fixed against the background stars.
The celestial equator runs 360 degrees around the Earth and separates the northern celestial hemisphere from the southern. Like the Earth’s equator, it bears a reading of zero degrees. On Earth this would be latitude. However, in the sky this is referred to as declination, or DEC for short. Lines of declination are named for their angular distance above and below the celestial equator. The lines are broken down into degrees, minutes and seconds of arc. Declina- tions south of the equator carry a minus sign
The celestial equivalent of longitude is called Right Ascension, or R.A. for short. Like the Earth’s lines of longitude, they run from pole to pole and are evenly spaced 15 degrees apart. Although the longitude lines are separated by an angular distance, they are also a measure of time. Each line of longitude is one hour apart from the next. Since the Earth rotates once every 24 hours, there are 24 lines total. As a result, the R.A. coordinates are marked off in units of time. It begins with an arbitrary point in the constellation of Pisces designated as 0 hours, 0 minutes, 0 seconds. All other points are designated by how far (i.e., how long) they lag behind this coordinate after it passes overhead moving towards the west.
Your Celestron
Figure
The celestial sphere seen from the outside showing R.A. and DEC.
28 • Astronomy Basics