IBM OS manual Appendix A. Details of what is detected

Page 6

Creating the VSAM ®les . . . . . . . . . . . . . . . . . . . . . 21 Estimating the size of the MVS data space and VSAM ®les. . . . . . . . 21

De®ning the VSAM ®les to CICS

22

Tailoring your CICS startup job

23

Restarting your CICS region

23

Chapter 4. Running the Scanner

25

Creating a summary report

25

Creating a detailed report

27

Contents of a detailed report

28

Chapter 5. Running the Detector

31

Displaying the Detector control screen

32

Starting the collection of affinity data

33

Pausing the collection of affinity data

34

Resuming the collection of affinity data

34

Stopping the collection of affinity data

35

Changing the Detector options

36

Detector errors

39

Chapter 6. Running the Reporter

41

Requesting a report from the Reporter

41

Output from the Reporter

42

Affinity report

43

Producing affinity transaction group de®nitions

46

Using the affinity report

47

Understanding the affinities

48

Modifying affinity transaction groups

48

Compressing affinity data

49

Using the IBM Cross System Product

50

Affinity analysis for a CICS region containing CSP 3.3 applications . . . .

50

Detailed affinity analysis

51

Chapter 7. Running the Builder

55

Syntax for input to the Builder

56

HEADER statements . . . . . . . . . . . . . . . . . . . . . 58

Output from the Builder

58

Combined affinity transaction group de®nitions

58

Data sets processed report

61

Empty transaction groups report

61

Group merge report

61

Error report . . . . . . . . . . . . . . . . . . . . . . . . . 62

Appendix A. Details of what is detected

65

ENQ/DEQ

65

TS commands

66

LOAD HOLD/RELEASE

66

RETRIEVE WAIT/START . . . . . . . . . . . . . . . . . . . . . 66

ADDRESS CWA . . . . . . . . . . . . . . . . . . . . . . . . 67

GETMAIN SHARED/FREEMAIN

67

LOAD/FREEMAIN . . . . . . . . . . . . . . . . . . . . . . . 67

CANCEL/DELAY/POST/START . . . . . . . . . . . . . . . . . . 68

SPI commands

69

WAIT commands

69

Appendix B. Correlating Scanner and Reporter output to source . . . .

71

iv CICS Transaction Affinities Utility Guide

Image 6
Contents IBM Page IBM Third edition March Contents Appendix A. Details of what is detected Reporter output Scanner output Examples Vi Cics Transaction Affinities Utility Guide Vii Trademarks Preface Argument zero Bibliography Cics Transaction Server for OS/390Cics books for Cics Transaction Server for OS/390 CICSPlex SM books for Cics Transaction Server for OS/390 Other Cics booksSummary of changes Xiv Cics Transaction Affinities Utility Guide Introducing transaction affinities Affinities, see the Cics Application Programming GuideRequesting region Routing regionTarget region Benets of dynamic routing What does dynamic routing cost?Transaction affinities Affinity relations Inter-transaction affinityTransaction-system affinity GlobalAffinity lifetimes Cics programming techniques for transaction affinitySuspect programming techniques Safe programming techniquesUnsafe programming techniques Avoiding the effects of transaction affinityProtecting applications from one another What next? Introducing the Transaction Affinities Utility Important noteAffinity utility program components Commands detected by the Transaction Affinities Utility Scanner component Detector componentWhat is detected Detector componentsWhat is not detected Worsening of transaction affinities relationsControlling the Detector How the affinity data is collectedSaving affinity data Affinity data Vsam les Control record Vsam leBuilder component Detector performanceReporter component Report presenting the affinity data in a readable formIntroducing the Transaction Affinities Utility Cics Transaction Affinities Utility Guide Preparing to use the affinity utility program Creating the Vsam lesEstimating the size of the MVS data space and Vsam les Dening the Vsam les to Cics #termidsPreparing to use the affinity utility program Cics Transaction Affinities Utility Guide Running the Scanner Creating a summary reportAffmod DD statement Creating a detailed report Cics Transaction Affinities UtilityContents of a detailed report Is an example of a detailed report produced by the Scanner Cics Transaction Affinities Utility Guide Running the Detector Changing the stateChanging the options Displaying the Detector control screen CAFF01When you can start collecting affinity data Starting the collection of affinity dataWhen you can resume collecting affinity data Pausing the collection of affinity dataWhen you can pause affinity data collection Resuming the collection of affinity dataWhen you can stop collecting affinity data Stopping the collection of affinity dataChanging the Detector options CAFF02Restore data on start „1… The control options Perform periodic savesTransid prex „4… Last update by useridSize of dataspace „2… Detect affinity typesDetector errors Cics Transaction Affinities Utility Guide CAUAFF1, CAUAFF2, and CAUAFF3 DD statements Running the ReporterRequesting a report from the Reporter Caucntl DD statementsOutput from the Reporter Cmdgrps DD statementTrangrps DD statement Affinity report System„3… Affinities reports „1… Incorrect affinity types„2… Affinity types reported TrangroupAffinity RecoverableCommand LifetimeBTS Task Producing affinity transaction group denitionsTerminal Total TransactionsUsing the affinity report Afflifesystem Descaddress CWARemove false affinities Understanding the affinitiesModifying affinity transaction groups Remove affinity relation worseningCompressing affinity data ENQUEUEs/DEQUEUEs Using the IBM Cross System ProductSPI commands Shared storageDetailed affinity analysis ENQUEUE/DEQUEUEGetmain Shared SPI commands Cics Transaction Affinities Utility Guide Running the Builder DSPSIZE=16numberCONTEXT=plexname Syntax for input to the Builder Repgrps DD statementAffgrps DD statement Builder input syntax Header statements Output from the BuilderCombined affinity transaction group denitions Combining basic affinity transaction groups Relation a Relation B Resultant relation C Data sets processed report Empty transaction groups reportGroup merge report Error report Sample group merge reportSample error report Cics Transaction Affinities Utility Guide Appendix A. Details of what is detected ENQ/DEQTS commands Load HOLD/RELEASEAddress CWA CANCEL/DELAY/POST/START SPI commands Wait commandsCics Transaction Affinities Utility Guide Reporter output Scanner outputExamples Example 2±VS Cobol Which occurs for the rst Move Move Logon or System when Pconv expected Cobol affinitiesUnrecognized Transids Cics Transaction Affinities Utility Guide Appendix D. Diagnostics Detector table manager diagnosticsFunction code values Table identier values Reason code values Reason code values Detector Cafb request queue manager diagnosticsDate formatter diagnostics This sectionIndex Bappl Vsam Cics Transaction Affinities Utility Guide Sending your comments to IBM Ibmr IBM

OS specifications

IBM OS, or IBM Operating System, refers to a family of operating systems developed by IBM to support its hardware architectures. IBM has produced a range of OS versions tailored for different computing needs, such as mainframes, servers, and personal computers. Among the most notable operating systems in IBM's portfolio are OS/2, z/OS, and AIX, representing a blend of innovation and reliability that has defined IBM's reputation in the computing world.

One of the defining features of IBM OS is its robust multitasking capabilities. Both z/OS, predominantly used in IBM's mainframe environments, and AIX, the Unix-based system for IBM Power Systems, support multiple users and processes simultaneously. This ability allows organizations to run numerous applications in parallel efficiently, maximizing resource utilization and improving productivity.

In terms of security, IBM OS incorporates advanced features aimed at protecting data and maintaining integrity. z/OS offers multifactor authentication, data encryption, and a security model that adheres to the latest regulatory requirements. AIX provides Secure Virtualization, which enhances isolation and security in cloud environments, essential for enterprises handling sensitive information.

Another key characteristic is the adaptability of IBM OS to modern technologies. For instance, z/OS is designed to integrate with cloud computing, open source, and DevOps practices. This adaptability supports organizations in modernizing their infrastructure while retaining the stability associated with IBM solutions. AIX similarly supports containerization and virtualization, which are critical for optimizing resource usage in dynamic computing environments.

IBM's commitment to scalability is evident across its OS offerings. Organizations leveraging z/OS can handle enormous workloads and transactional volumes, making it a preferred choice for industries like finance and telecommunications. AIX also supports scalability, allowing businesses to expand their computing resources as demands grow without significant downtime.

The availability of development tools and environments is another noteworthy aspect of IBM OS. With robust IDEs and programming languages support, developers can create and deploy applications smoothly. This assists businesses in streamlining their development processes and improving time-to-market for innovative solutions.

In summary, IBM OS encompasses a suite of operating systems characterized by multitasking, security, adaptability to modern technologies, scalability, and comprehensive development support. These features have cemented IBM's position as a leader in enterprise solutions, allowing organizations across various industries to thrive in an increasingly digital world.