IBM OS Producing affinity transaction group denitions, Terminal, BTS Task, Total Transactions

Page 62

Usage The number of times that this particular EXEC CICS command (with the transaction, program, and offset values reported) taking part in the affinity, up to a limit of 5000.

Note: The usage count is an indication of the relative importance of the affinity, and is not a completely accurate usage count. For performance reasons, when the usage count is incremented by the Detector, the ªsave to ®leº ¯ag is not necessarily set to indicate that the record needs to be saved to the data ®le. The save ¯ag is set as follows:

0<= usage count < 10, save flag set every increment

10<= usage count < 100, save flag set every 10 increments

100<= usage count < 5000, save flag set every 100 increments

 

5000 <= usage count,

neither increment nor save flag set

 

If the usage count is '1+', it means that at least one example of the affinity

 

was seen but that the total number of occurrences of that affinity is

 

unknown.

 

 

Terminal

 

 

Whether this particular EXEC CICS command (with the transaction,

 

program, and offset values reported) was ever issued by a transaction

 

initiated from a terminal; that is, started as a result of terminal input or for

 

an EXEC CICS RETURN TRANSID command. (This does not include

 

ATI-started transactions.)

 

The word Mix in this column is used to indicate that a particular EXEC

CICS command was issued by a transaction initiated from a terminal and

also issued by the transaction when it was initiated with no associated

terminal.

 

BTS Task

 

Whether it is a CICS BTS task or not.

Total Transactions

The total number of different transactions in the affinity transaction group.

Total Programs

The total number of different programs in the affinity transaction group.

Producing affinity transaction group de®nitions

The Reporter produces affinity transaction group de®nitions suitable for input to the Builder (but not to CICSPlex SM). Each de®nition consists of a unique transaction group name, a relation, a lifetime, and a set of tranids.

Not everything that appears in the report appears as an affinity transaction group. In particular, transaction-system affinities do not appear, because they are not of interest to a dynamic routing program; nor do transactions that were not initiated from a terminal (for the same reason).

Figure 9 on page 47 shows a sample set of de®nitions to match the report in

Figure 8 on page 43.

Notes:

1. The transaction group name is not a valid CICSPlex SM transaction group name, because the latter must be eight characters; it is used only as a cross-reference to the report.

46 CICS Transaction Affinities Utility Guide

Image 62
Contents IBM Page IBM Third edition March Contents Appendix A. Details of what is detected Reporter output Scanner output Examples Vi Cics Transaction Affinities Utility Guide Vii Trademarks Preface Argument zero Cics books for Cics Transaction Server for OS/390 BibliographyCics Transaction Server for OS/390 CICSPlex SM books for Cics Transaction Server for OS/390 Other Cics booksSummary of changes Xiv Cics Transaction Affinities Utility Guide Introducing transaction affinities Affinities, see the Cics Application Programming GuideTarget region Requesting regionRouting region Transaction affinities Benets of dynamic routingWhat does dynamic routing cost? Affinity relations Inter-transaction affinityTransaction-system affinity GlobalAffinity lifetimes Cics programming techniques for transaction affinitySuspect programming techniques Safe programming techniquesUnsafe programming techniques Avoiding the effects of transaction affinityProtecting applications from one another What next? Introducing the Transaction Affinities Utility Important noteAffinity utility program components Commands detected by the Transaction Affinities Utility Scanner component Detector componentWhat is detected Detector componentsWhat is not detected Worsening of transaction affinities relationsControlling the Detector How the affinity data is collectedSaving affinity data Affinity data Vsam les Control record Vsam leBuilder component Detector performanceReporter component Report presenting the affinity data in a readable formIntroducing the Transaction Affinities Utility Cics Transaction Affinities Utility Guide Estimating the size of the MVS data space and Vsam les Preparing to use the affinity utility programCreating the Vsam les Dening the Vsam les to Cics #termidsPreparing to use the affinity utility program Cics Transaction Affinities Utility Guide Running the Scanner Creating a summary reportAffmod DD statement Creating a detailed report Cics Transaction Affinities UtilityContents of a detailed report Is an example of a detailed report produced by the Scanner Cics Transaction Affinities Utility Guide Changing the options Running the DetectorChanging the state Displaying the Detector control screen CAFF01When you can start collecting affinity data Starting the collection of affinity dataWhen you can resume collecting affinity data Pausing the collection of affinity dataWhen you can pause affinity data collection Resuming the collection of affinity dataWhen you can stop collecting affinity data Stopping the collection of affinity dataChanging the Detector options CAFF02Restore data on start „1… The control options Perform periodic savesTransid prex „4… Last update by useridSize of dataspace „2… Detect affinity typesDetector errors Cics Transaction Affinities Utility Guide CAUAFF1, CAUAFF2, and CAUAFF3 DD statements Running the ReporterRequesting a report from the Reporter Caucntl DD statementsTrangrps DD statement Output from the ReporterCmdgrps DD statement Affinity report System„3… Affinities reports „1… Incorrect affinity types„2… Affinity types reported TrangroupAffinity RecoverableCommand LifetimeBTS Task Producing affinity transaction group denitionsTerminal Total TransactionsUsing the affinity report Afflifesystem Descaddress CWARemove false affinities Understanding the affinitiesModifying affinity transaction groups Remove affinity relation worseningCompressing affinity data ENQUEUEs/DEQUEUEs Using the IBM Cross System ProductSPI commands Shared storageDetailed affinity analysis ENQUEUE/DEQUEUEGetmain Shared SPI commands Cics Transaction Affinities Utility Guide CONTEXT=plexname Running the BuilderDSPSIZE=16number Affgrps DD statement Syntax for input to the BuilderRepgrps DD statement Builder input syntax Combined affinity transaction group denitions Header statementsOutput from the Builder Combining basic affinity transaction groups Relation a Relation B Resultant relation C Group merge report Data sets processed reportEmpty transaction groups report Error report Sample group merge reportSample error report Cics Transaction Affinities Utility Guide Appendix A. Details of what is detected ENQ/DEQTS commands Load HOLD/RELEASEAddress CWA CANCEL/DELAY/POST/START SPI commands Wait commandsCics Transaction Affinities Utility Guide Examples Reporter outputScanner output Example 2±VS Cobol Which occurs for the rst Move Move Unrecognized Transids Logon or System when Pconv expectedCobol affinities Cics Transaction Affinities Utility Guide Function code values Appendix D. DiagnosticsDetector table manager diagnostics Table identier values Reason code values Reason code values Detector Cafb request queue manager diagnosticsDate formatter diagnostics This sectionIndex Bappl Vsam Cics Transaction Affinities Utility Guide Sending your comments to IBM Ibmr IBM

OS specifications

IBM OS, or IBM Operating System, refers to a family of operating systems developed by IBM to support its hardware architectures. IBM has produced a range of OS versions tailored for different computing needs, such as mainframes, servers, and personal computers. Among the most notable operating systems in IBM's portfolio are OS/2, z/OS, and AIX, representing a blend of innovation and reliability that has defined IBM's reputation in the computing world.

One of the defining features of IBM OS is its robust multitasking capabilities. Both z/OS, predominantly used in IBM's mainframe environments, and AIX, the Unix-based system for IBM Power Systems, support multiple users and processes simultaneously. This ability allows organizations to run numerous applications in parallel efficiently, maximizing resource utilization and improving productivity.

In terms of security, IBM OS incorporates advanced features aimed at protecting data and maintaining integrity. z/OS offers multifactor authentication, data encryption, and a security model that adheres to the latest regulatory requirements. AIX provides Secure Virtualization, which enhances isolation and security in cloud environments, essential for enterprises handling sensitive information.

Another key characteristic is the adaptability of IBM OS to modern technologies. For instance, z/OS is designed to integrate with cloud computing, open source, and DevOps practices. This adaptability supports organizations in modernizing their infrastructure while retaining the stability associated with IBM solutions. AIX similarly supports containerization and virtualization, which are critical for optimizing resource usage in dynamic computing environments.

IBM's commitment to scalability is evident across its OS offerings. Organizations leveraging z/OS can handle enormous workloads and transactional volumes, making it a preferred choice for industries like finance and telecommunications. AIX also supports scalability, allowing businesses to expand their computing resources as demands grow without significant downtime.

The availability of development tools and environments is another noteworthy aspect of IBM OS. With robust IDEs and programming languages support, developers can create and deploy applications smoothly. This assists businesses in streamlining their development processes and improving time-to-market for innovative solutions.

In summary, IBM OS encompasses a suite of operating systems characterized by multitasking, security, adaptability to modern technologies, scalability, and comprehensive development support. These features have cemented IBM's position as a leader in enterprise solutions, allowing organizations across various industries to thrive in an increasingly digital world.