IBM OS manual Combining basic affinity transaction groups

Page 75

*

HEADER APPLID(BUILDER ) SAVEDATE(95/11/27) SAVETIME(12:00:51);

„1…

*

 

 

*Generated by the CICS Transaction Affinities Utility (Builder) on 1995/06/28

*Note: Suitable for input to CICSPlex SM

*

 

CONTEXT CICPLEX1;

 

*

 

* REMOVE TRANGRP NAME(AFF1GRP );

 

CREATE TRANGRP NAME(AFF1GRP ) AFFINITY(LUNAME) AFFLIFE(SYSTEM

)

MATCH(LUNAME) STATE(DORMANT);

 

CREATE DTRINGRP TRANGRP(AFF1GRP ) TRANID(AFF1);

 

CREATE DTRINGRP TRANGRP(AFF1GRP ) TRANID(AFF2);

 

CREATE DTRINGRP TRANGRP(AFF1GRP ) TRANID(AFF3);

 

CREATE DTRINGRP TRANGRP(AFF1GRP ) TRANID(AFF4);

 

CREATE DTRINGRP TRANGRP(AFF1GRP ) TRANID(AFF5);

 

CREATE DTRINGRP TRANGRP(AFF1GRP ) TRANID(AFF6);

 

CREATE DTRINGRP TRANGRP(AFF1GRP ) TRANID(AFF7);

 

CREATE DTRINGRP TRANGRP(AFF1GRP ) TRANID(AFF8);

 

*

 

* REMOVE TRANGRP NAME(AFTDGRP );

 

CREATE TRANGRP NAME(AFTDGRP ) AFFINITY(LUNAME) AFFLIFE(PCONV

)

MATCH(LUNAME) STATE(DORMANT);

 

CREATE DTRINGRP TRANGRP(AFTDGRP ) TRANID(AFTD);

 

CREATE DTRINGRP TRANGRP(AFTDGRP ) TRANID(AFTR);

 

CREATE DTRINGRP TRANGRP(AFTDGRP ) TRANID(AFTW);

 

*

 

* REMOVE TRANGRP NAME(AUXXGRP );

 

CREATE TRANGRP NAME(AUXXGRP ) AFFINITY(GLOBAL) AFFLIFE(SYSTEM

)

MATCH(LUNAME) STATE(DORMANT);

 

CREATE DTRINGRP TRANGRP(AUXXGRP ) TRANID(AUXX);

 

CREATE DTRINGRP TRANGRP(AUXXGRP ) TRANID(CWA1);

 

Figure 11. Sample de®nitions for combined affinity transaction groups

Notes:

1.The values of the SAVEDATE and SAVETIME ®elds in the HEADER statement

give the latest save date and save time from any of the input data sets. (See Figure 11 („1…) and Figure 12 on page 61.)

2.The combined transaction groups can be input again to the Builder. For example, you may decide to:

a.Use the Reporter, then the Builder, to produce combined groups for temporary storage affinities.

b.Use the Reporter, then the Builder, to produce combined groups for all other affinity command types.

c.Merge the two ®les output by the Builder in steps 2.a and 2.b, by inputting those ®les to the Builder together.

d.Input to CICSPlex SM the ®le output by the Builder in step 2.c.

This facility is particularly useful when dealing with the temporary storage compression problem, described in ªCompressing affinity dataº on page 49.

Combining basic affinity transaction groups

When the Builder combines two basic affinity transaction groups, it assigns relations and lifetimes to the combined group based on the relations and lifetimes derived from the basic groups. This may cause some worsening of the relations and lifetimes. For example, LUNAME combined with USERID gives GLOBAL. Table 7

Chapter 7. Running the Builder 59

Image 75
Contents IBM Page IBM Third edition March Contents Appendix A. Details of what is detected Reporter output Scanner output Examples Vi Cics Transaction Affinities Utility Guide Vii Trademarks Preface Argument zero Bibliography Cics Transaction Server for OS/390Cics books for Cics Transaction Server for OS/390 Other Cics books CICSPlex SM books for Cics Transaction Server for OS/390Summary of changes Xiv Cics Transaction Affinities Utility Guide Affinities, see the Cics Application Programming Guide Introducing transaction affinitiesRequesting region Routing regionTarget region Benets of dynamic routing What does dynamic routing cost?Transaction affinities Global Inter-transaction affinityTransaction-system affinity Affinity relationsCics programming techniques for transaction affinity Affinity lifetimesAvoiding the effects of transaction affinity Safe programming techniquesUnsafe programming techniques Suspect programming techniquesProtecting applications from one another What next? Important note Introducing the Transaction Affinities UtilityAffinity utility program components Commands detected by the Transaction Affinities Utility Detector component Scanner componentDetector components What is detectedWorsening of transaction affinities relations What is not detectedHow the affinity data is collected Controlling the DetectorSaving affinity data Control record Vsam le Affinity data Vsam lesReport presenting the affinity data in a readable form Detector performanceReporter component Builder componentIntroducing the Transaction Affinities Utility Cics Transaction Affinities Utility Guide Preparing to use the affinity utility program Creating the Vsam lesEstimating the size of the MVS data space and Vsam les #termids Dening the Vsam les to CicsPreparing to use the affinity utility program Cics Transaction Affinities Utility Guide Creating a summary report Running the ScannerAffmod DD statement Cics Transaction Affinities Utility Creating a detailed reportContents of a detailed report Is an example of a detailed report produced by the Scanner Cics Transaction Affinities Utility Guide Running the Detector Changing the stateChanging the options CAFF01 Displaying the Detector control screenStarting the collection of affinity data When you can start collecting affinity dataResuming the collection of affinity data Pausing the collection of affinity dataWhen you can pause affinity data collection When you can resume collecting affinity dataStopping the collection of affinity data When you can stop collecting affinity dataCAFF02 Changing the Detector options„1… The control options Perform periodic saves Restore data on start„2… Detect affinity types „4… Last update by useridSize of dataspace Transid prexDetector errors Cics Transaction Affinities Utility Guide Caucntl DD statements Running the ReporterRequesting a report from the Reporter CAUAFF1, CAUAFF2, and CAUAFF3 DD statementsOutput from the Reporter Cmdgrps DD statementTrangrps DD statement System Affinity reportTrangroup „1… Incorrect affinity types„2… Affinity types reported „3… Affinities reportsLifetime RecoverableCommand AffinityTotal Transactions Producing affinity transaction group denitionsTerminal BTS TaskAfflifesystem Descaddress CWA Using the affinity reportRemove affinity relation worsening Understanding the affinitiesModifying affinity transaction groups Remove false affinitiesCompressing affinity data Shared storage Using the IBM Cross System ProductSPI commands ENQUEUEs/DEQUEUEsENQUEUE/DEQUEUE Detailed affinity analysisGetmain Shared SPI commands Cics Transaction Affinities Utility Guide Running the Builder DSPSIZE=16numberCONTEXT=plexname Syntax for input to the Builder Repgrps DD statementAffgrps DD statement Builder input syntax Header statements Output from the BuilderCombined affinity transaction group denitions Combining basic affinity transaction groups Relation a Relation B Resultant relation C Data sets processed report Empty transaction groups reportGroup merge report Sample group merge report Error reportSample error report Cics Transaction Affinities Utility Guide ENQ/DEQ Appendix A. Details of what is detectedLoad HOLD/RELEASE TS commandsAddress CWA CANCEL/DELAY/POST/START Wait commands SPI commandsCics Transaction Affinities Utility Guide Reporter output Scanner outputExamples Example 2±VS Cobol Which occurs for the rst Move Move Logon or System when Pconv expected Cobol affinitiesUnrecognized Transids Cics Transaction Affinities Utility Guide Appendix D. Diagnostics Detector table manager diagnosticsFunction code values Table identier values Reason code values This section Detector Cafb request queue manager diagnosticsDate formatter diagnostics Reason code valuesIndex Bappl Vsam Cics Transaction Affinities Utility Guide Sending your comments to IBM Ibmr IBM

OS specifications

IBM OS, or IBM Operating System, refers to a family of operating systems developed by IBM to support its hardware architectures. IBM has produced a range of OS versions tailored for different computing needs, such as mainframes, servers, and personal computers. Among the most notable operating systems in IBM's portfolio are OS/2, z/OS, and AIX, representing a blend of innovation and reliability that has defined IBM's reputation in the computing world.

One of the defining features of IBM OS is its robust multitasking capabilities. Both z/OS, predominantly used in IBM's mainframe environments, and AIX, the Unix-based system for IBM Power Systems, support multiple users and processes simultaneously. This ability allows organizations to run numerous applications in parallel efficiently, maximizing resource utilization and improving productivity.

In terms of security, IBM OS incorporates advanced features aimed at protecting data and maintaining integrity. z/OS offers multifactor authentication, data encryption, and a security model that adheres to the latest regulatory requirements. AIX provides Secure Virtualization, which enhances isolation and security in cloud environments, essential for enterprises handling sensitive information.

Another key characteristic is the adaptability of IBM OS to modern technologies. For instance, z/OS is designed to integrate with cloud computing, open source, and DevOps practices. This adaptability supports organizations in modernizing their infrastructure while retaining the stability associated with IBM solutions. AIX similarly supports containerization and virtualization, which are critical for optimizing resource usage in dynamic computing environments.

IBM's commitment to scalability is evident across its OS offerings. Organizations leveraging z/OS can handle enormous workloads and transactional volumes, making it a preferred choice for industries like finance and telecommunications. AIX also supports scalability, allowing businesses to expand their computing resources as demands grow without significant downtime.

The availability of development tools and environments is another noteworthy aspect of IBM OS. With robust IDEs and programming languages support, developers can create and deploy applications smoothly. This assists businesses in streamlining their development processes and improving time-to-market for innovative solutions.

In summary, IBM OS encompasses a suite of operating systems characterized by multitasking, security, adaptability to modern technologies, scalability, and comprehensive development support. These features have cemented IBM's position as a leader in enterprise solutions, allowing organizations across various industries to thrive in an increasingly digital world.