Cisco Systems WAVE594K9, 694 manual Electromagnetic and Radio Frequency Interference, Magnetism

Page 78

Appendix B Maintaining the WAVE-594 and WAVE-694

Maintaining Your Site Environment

Electromagnetic and Radio Frequency Interference

Electromagnetic interference (EMI) and radio frequency interference (RFI) from a system can adversely affect devices such as radio and television (TV) receivers operating near the system. Radio frequencies emanating from a system can also interfere with cordless and low-power telephones. Conversely, RFI from high-power telephones can cause spurious characters to appear on the system’s monitor screen.

RFI is defined as any EMI with a frequency above 10 kilohertz (kHz). This type of interference can travel from the system to other devices through the power cable and power source or through the air like transmitted radio waves. The Federal Communications Commission (FCC) publishes specific regulations to limit the amount of EMI and RFI emitted by computing equipment. Each system meets these FCC regulations.

To reduce the possibility of EMI and RFI, follow these guidelines:

Operate the system only with the system cover installed.

Ensure that the screws on all peripheral cable connectors are securely fastened to their corresponding connectors on the back of the system.

Always use shielded cables with metal connector shells for attaching peripherals to the system.

Magnetism

Because they store data magnetically, hard disk drives are extremely susceptible to the effects of magnetism. Hard disk drives should never be stored near magnetic sources such as the following:

Monitors

TV sets

Printers

Telephones with real bells

Fluorescent lights

Shock and Vibration

Excessive shock can damage the function, external appearance, and physical structure of a system. Each system has been designed to operate properly even after withstanding a minimum of six consecutively executed shock pulses in the positive and negative x, y, and z axes (one pulse on each side of the system). Each shock pulse can measure up to 5 gravities (G) for up to 11 milliseconds (ms). In storage, the system can withstand shock pulses of 20 G for 11 ms.

Excessive vibration can cause the same problems as mentioned earlier for shock, as well as causing components to become loose in their sockets or connectors. Systems can be subject to significant vibration when being transported by a vehicle or when operated in an environment with machinery that causes vibration.

Cisco Wide Area Virtualization Engine 594 and 694 Hardware Installation Guide

 

B-4

OL-24619-02

 

 

 

Image 78
Contents Cisco Systems, Inc Page N T E N T S Installing Hardware Options for the WAVE-594 and WAVE-6944-1 Humidity Altitude B-2 OL-24619-02 Preface PurposeAudience Chapter Title Description OrganizationConventions Convention DescriptionScreen examples use the following conventions OL-24619-02 Page Xii Related Documentation XiiiObtaining Documentation and Submitting a Service Request Hardware Features Introducing the Cisco Wide Area Virtualization Engine 594Supported Products Front Panel Components and LEDs 1shows the front panel componentsLED Color State DescriptionBack Panel Components and LEDs 3shows the back panel componentsLocation of Ports and Connectors Ethernet Port ConnectorsConnecting a Console Terminal Installing the Cisco USB DriverCabling Softwareid=280836712 OL-24619-02 Preparing to Install the WAVE-594 and WAVE-694 Safety Warnings and CautionsSafety Guidelines General Precautions,Page General Precautions Understanding the Environmental Requirements System Reliability ConsiderationsProtecting Against Electrostatic Discharge Understanding the Power Requirements Understanding the Grounding RequirementsInstalling the WAVE-594 and WAVE-694 Rack-Mounting Considerations, Parts, and ToolsRack Type Name Description Qty PostMounting in a 4-Post Rack Attaching the BracketsAttaching Rear Rack Mount to the Rack Front-Mounting in a 2-Post Rack Rack-Mounting the ChassisAttaching the Front Brackets Cabling Connecting Power and Booting the System Checking the LEDsRemoving or Replacing a Wave Appliance OL-24619-02 Installing Hardware Options for the WAVE-594 and WAVE-694 Installing a Cisco Wave Interface ModuleReplacing a Hard Disk Drive/Solid State Drive Interface Module-RemovalPress the button and swing the handle out. See Figure Replacing a Fan Replacing a Power Supply Remove the power cord from the power supplyInstalling Memory Removing the CoverInstalling Memory Modules 5shows the memory slot mapping on the system boardSlot A3 Slot A2 Slot A1 Slot B3 Slot B2 Slot B1 Memory Slot MappingInstalling an Rdimm OL-24619-02 Wave Interface Modules Interface Module DescriptionsGigabit Ethernet Interface Module-Copper Gigabit Ethernet Interface Module-Fiber Optic Gigabit Ethernet Interface Module-4-Port CopperGigabit Ethernet Interface Module-Fiber Optic SFP+ Gigabit Ethernet Interface Module-4-Port Fiber OpticInline Interface Ports and LED Indicators Name Color State Description2describes the Gigabit Ethernet port LEDs LEDs Network Adapter Cabling Requirements Gigabit Ethernet-CopperConnection Required Cable Cable Requirements for Wave Connections Using Fast Ethernet Gigabit Ethernet-Fiber Optic Wave WAN 12 Cabling Between Two Inline WAVEs OL-24619-02 OL-24619-02 Troubleshooting the System Hardware Identifying System ProblemsChecking Connections and Switches Troubleshooting the Ethernet ControllerNetwork Connection Problems Ethernet Controller Troubleshooting ChartUndetermined Problems Ethernet Controller Problem ActionsProblem-Solving Tips Error Symptoms Symptom Cause and ActionSee the Undetermined Problems section on Symptom FRU or Action Console Port Connector section onWAVE-594 and WAVE-694 Hardware Specifications Appliance SpecificationsSpecification Description Specification Description Interface Module Specifications Cisco 10GBASE SFP+ ModulesSpecification Description Maintaining the WAVE-594 and WAVE-694 Maintaining Your Site EnvironmentTemperature HumidityAltitude Dust and Particles CorrosionElectrostatic Discharge Electromagnetic and Radio Frequency Interference MagnetismShock and Vibration Using Power Protection Devices Power Source InterruptionsUninterruptible Power Supplies Surge ProtectorsLine Conditioners D E IN-2 IN-3 IN-4
Related manuals
Manual 6 pages 6.06 Kb

694, WAVE594K9 specifications

Cisco Systems WAVE594K9 is a state-of-the-art application delivery controller (ADC) that is designed to optimize the performance and availability of applications across a wide area network. As part of Cisco’s advanced networking solutions, the WAVE594K9 effectively enhances application delivery, ensuring a seamless user experience even under heavy traffic conditions.

One of the primary features of the WAVE594K9 is its ability to provide comprehensive traffic management. This device intelligently load balances incoming requests and distributes them across multiple servers. By optimizing resource allocation, it minimizes response times and maximizes throughput, which is particularly beneficial for organizations dealing with fluctuating traffic patterns.

The WAVE594K9 also excels in application acceleration. This is achieved through various optimization techniques, including compression and caching. By reducing the size of transmitted data and storing frequently accessed content closer to users, the WAVE594K9 significantly speeds up application delivery. As a result, businesses can ensure that their users experience minimal latency, even when accessing resource-intensive applications.

Security is another key characteristic of the WAVE594K9. It integrates advanced security features, such as application layer firewalls, SSL offload capabilities, and DDoS protection. These built-in security measures not only safeguard sensitive data but also improve performance by offloading decryption tasks from application servers, allowing them to focus on processing actual requests.

Moreover, the WAVE594K9 is equipped with robust monitoring and reporting tools. Administrators can gain real-time insights into application performance, user activity, and traffic patterns. This level of visibility enables proactive management and troubleshooting, which helps in identifying and resolving potential issues before they impact end-users.

In terms of scalability, the WAVE594K9 is designed to grow with an organization’s needs. It can easily be integrated into existing IT infrastructures and expanded as traffic demands increase. This flexibility makes it an ideal solution for businesses of all sizes, from small enterprises to large corporations.

To summarize, the Cisco Systems WAVE594K9 is a powerful ADC that enhances application delivery through intelligent traffic management, application acceleration, built-in security features, and comprehensive monitoring tools. Its ability to scale effectively makes it a strategic investment for ensuring optimal application performance in today’s dynamic IT environments.