Cisco Systems AS5800 manual Startup Locating problem Router shelf Cooling subsystem

Page 167

R

redundancy

1-11

 

 

 

resource allocation

1-11

 

 

RJ-45 ports

3-26

 

 

 

router shelf

 

 

 

 

airflow 2-20

 

 

 

connecting cables

3-28

 

connecting to dial shelf

 

3-26

description

1-32

 

 

interfaces

1-33

 

 

 

network processor card, DRAM configuration A-1

port adapter slots

1-33

 

power

 

 

 

 

AC-input power supply

2-4

DC-input power supply

2-4

powering on

4-2

 

 

specifications

2-4

 

 

power supplies

1-34

 

 

rack-mounting3-25

 

 

replacing components

2-15

troubleshooting

 

 

 

dial shelf interconnect port adapter 5-12

I/O controller card

5-11

network processor card

5-12

port adapters

5-12

 

 

S

safety recommendations 2-14

SIMM configurations, network processor card A-1 site requirements 2-1,2-20

Slot Ownership Arbitration 1-11

specifications

 

 

AC-input power

1-41

DC-input power

1-41

dial shelf

A-1

 

subsystems

 

 

description

5-2

 

troubleshooting

 

cooling

5-9

 

power

5-7

 

processor cards

5-11

system controller

1-7

T

T1/E1 trunk card

cabling

3-29

LEDs

4-4

slot assignment 3-13

TDM bus

xi

TDM resource allocation

1-11

terms and acronyms

x

 

tools 2-5

 

 

 

troubleshooting

 

 

dial shelf

 

 

 

power subsystem

 

5-8

startup

5-6

 

 

locating problem

5-2

router shelf

 

 

 

cooling subsystem

5-9

power subsystem

 

5-8

processor subsystem 5-11

startup

5-5

 

 

startup 5-4

 

 

using LEDs

5-4

 

 

trunk card

 

 

 

See T1/E1 trunk card

 

W

warnings

 

 

 

 

 

ACA-permitted equipment

3-29

 

chassis lifting

2-5,C-7

 

 

definition

ix

 

 

 

disconnecting telephone-network cables 2-14

ground conductor

3-23

 

 

ground connection

3-23

 

 

hazardous voltages in WAN ports

3-27,3-29

installation

 

2-15

 

 

 

jewelry removal

2-15,C-3

 

lightning activity

3-29

 

 

power cord

 

3-15

 

 

 

qualified personnel

2-1,3-29

 

rack mounting and servicing

2-18

 

SELV circuit

1-23,3-27

 

 

supply circuit

2-18

 

 

telecommunications lines

3-29

 

weight A-1 to A-2

 

 

 

wiring

 

 

 

 

 

color codes

 

B-1

 

 

 

distance limits 2-13

 

 

guidelines

2-13

 

 

 

interference

 

2-13

 

 

World Wide Web, documentation on

xi

Index 3

Image 167
Contents Corporate Headquarters Page Chapter Cisco AS5800 Product Overview About This GuideChapter Installing the Cisco AS5800 Chapter Preparing for InstallationChapter Hardware Troubleshooting Index Appendix a Cisco AS5800 SpecificationsAudience Document ObjectivesDocument Organization Document OrganizationDocument Conventions Safety Warnings Terms and Acronyms Terms and AcronymsRelated Documentation Read Me First If You Need More Information Cisco Connection Online Cisco Connection OnlineCisco AS5800 Product Overview System Components System ComponentsCisco AS5800-Front View Cisco AS5800-Rear View Cisco AS5800 with Enhanced AC-Input Power Shelf-Front View Cisco AS5800 with Enhanced AC-Input Power Shelf-Rear View Functional Overview Functional OverviewCisco 5814 Dial Shelf Cisco 5814 Dial ShelfAS5800 Series Clock ManagementDial Shelf OIR Events Dial Shelf Card BootupTDM Resource Allocation Slot Ownership ArbitrationHub Redundancy Dial Shelf Field Replaceable Units Dial Shelf Field-Replaceable UnitsEnvironmental Monitoring Dial Shelf Field-Replaceable UnitsDial Shelf Backplane Dial Shelf BackplaneCisco 5814 Dial Shelf Backplane-Rear View Dial Shelf Blower Assembly Dial Shelf Blower AssemblyPower LED Memory Type Size Quantity Product Number Dial Shelf Controller Card9shows the dial shelf controller card components LED Indicators and Alarm Buttons 11shows the dial shelf controller card front panel LEDs Dial Shelf Controller Front Panel LEDs and LCDs LED Indicator Display DescriptionButton Description Dial Shelf Controller Card Pushbuttons13 Dial Shelf Controller Card Ports Common Logic Interface Dial Shelf DC-Input Power SupplyCircuit Description Dial Shelf DC-Input Power SupplyConnector Pin Definitions Description DC-input Power Supply Circuits14 Power-Entry Modules-Dial Shelf Rear View Dial Shelf Filter Module Dial Shelf Filter Module15 Filter Module-Dial Shelf Rear View Enhanced AC-Input Power Shelf Enhanced AC-Input Power Shelf17 Cisco AS5800 Enhanced AC-Input Power Shelf-Rear View Power Supply Safety Features Enhanced AC-Input Power ShelfColor Description Enhanced Power Shelf LED IndicatorsEnhanced AC-Input Power Supply LEDs Cisco 7206 Router Shelf Cisco 7206 Router ShelfNetwork Interfaces 20 Port Adapter Slot Numbering Power SuppliesMidplane Network Processing EngineField-Replaceable Units Rack-Mount KitDial Shelf Interconnect Port Adapter LED IndicatorsDial Shelf Interconnect Port Adapter Split Dial Shelves Split Dial ShelvesSoftware and Hardware Requirements Power Requirements Power RequirementsAC-Input Power Shelf Standard AC-Input Power Supply LEDs Standard AC-Input Power Shelf LED IndicatorsDC-Input Power Specifications DC-Input Power SpecificationsAC-Input Power Specifications 26 Cisco AS5800 Enhanced AC-Input Power Shelf-Front View Online Insertion and Removal Online Insertion and RemovalOnline Insertion and Removal Site Requirements AC and DC PowerVAC 15A Site Requirements AC Power PlanningCisco 5814 Dial Shelf AC and DC Power DC Power PlanningCisco 7206 Router Shelf Lifting SafetyLifting Safety Required Tools and Equipment Required Tools and EquipmentPreparing the Dial Shelf for Rack-Mount Removing the Blower AssemblyPreparing the Dial Shelf for Rack-Mount Captive screws Removing the Blower AssemblyRemoving and Replacing a PEM Removing the DC Power-Entry ModulesRemoving Dial Shelf Cards and Dial Shelf Controller Cards Removing Dial Shelf Cards and Dial Shelf Controller CardsH11040 Installing the Rack-Mount Brackets on the Chassis Installing the Rack-Mount Brackets on the ChassisRear Front Interference Considerations Plant WiringDistance Limitations and Interface Specifications Plant WiringSafety Recommendations Safety RecommendationsMaintaining Safety with Electricity Maintaining Safety with ElectricityRack-Mounting Considerations Rack-Mounting ConsiderationsPreventing Electrostatic Discharge Damage Typical 19-Inch Equipment Rack Posts and Mounting Strips Rack-Mounting Considerations Cisco 5814 Footprint and Outer Dimensions Preventive Site Configuration Maintaining Normal Operation Site SpecificationsConnecting to an AC Power Source Installing the Cisco AS5800Parts Required Mount the Cables on the AC Power SupplyConnecting to an AC Power Source Installing the Power Shelf in the Rack Installing the Power Shelf in the RackRemoving and Replacing a Power Supply Removing and Replacing an Enhanced Shelf Power Supply Installing the AC-Input Power Shelf in a 4-Post Rack Installing the Dial Shelf in the RackMounting Support Brackets for the Cisco AS5800 Installing the Dial Shelf in the RackMounting the Rear Brackets Telco Rack- Rear Bracket InstallationPost Rack- Rear Bracket Installation Replacing the Dial Shelf Components Replacing the Dial Shelf ComponentsReplacing the Blower Assembly Replacing a PEM Replacing the Power-Entry ModulesInstalling the Cisco AS5800 10 Using the Ejector Levers Connecting Cables to the Dial Shelf Connecting Cables to the Dial ShelfConnecting the AC Power Cables Grounding the AC-Input Power Shelf to the Dial Shelf11 Attaching the Ground Wire to a Standard Power Shelf Connecting the AC Power Cables Connecting the DC Power Cables13 Connecting the DC-Interconnect Cables Connecting the Monitor Cable14 Connecting the Monitor Cable 15 Connecting the Monitor Cable to an Enhanced Power Shelf Connecting the AC Power Cords16 Connecting the AC Power Cords to a Standard Power Shelf Installing the Safety Cover on the Standard Power Shelf18 Installing the Safety Cover to a Standard Power Shelf Grounding the Dial Shelf Connecting to a DC Power SourceConnecting to a DC Power Source 19 Cisco AS5800-Rear View Connecting DC Power CablesRack-Mounting the Router Shelf Rack-Mounting the Router ShelfConnecting the Dial Shelf to the Router Shelf Connecting the Dial Shelf to the Router ShelfConnecting the Dial Shelf to the Router Shelf Connecting Router Shelf Port Adapter Cables Connecting Router Shelf Port Adapter CablesConnecting Trunk Card Cables Connecting Trunk Card Cables24 Connecting the CT1 and CE1 Trunk Card RJ-45 Cables Connecting to the Router Shelf Console and Auxiliary Ports Connecting to the Router Shelf Console and Auxiliary PortsConnecting to the Router Shelf Console and Auxiliary Ports AC-Input Power Shelf-Front View Powering On the Cisco AS5800PEM power switches Observing Access Server LEDs Observing Access Server LEDsColor/Condition Nominal LED ReadingsDial Shelf Card LEDs AS 5800 Nominal LED Readings ComponentObserving Power-Entry Module LEDs Observing Power-Entry Module LEDsDial Shelf Controller Card Front Panel LEDs Observing Dial Shelf Controller Card LEDsPower and Warning LEDs Starting the Cisco Blower Assembly LEDsBlower Assembly Front Panel LEDs Starting the Cisco Observing Router Shelf Port Adapter LEDsViewing Your System Configuration Viewing Your System ConfigurationEnter enable mode 5800#sh dial-shelf Where to Go Next Where to Go NextWhere to Go Next Hardware Troubleshooting Problem Solving with Subsystems Problem Solving with SubsystemsProblem Solving with Subsystems-Cisco 7206 Router Problem Solving with Subsystems- Cisco 7206 RouterIdentifying Startup Problems Identifying Startup ProblemsStarting Up the Cisco 7206 Router Shelf Starting Up the Cisco 7206 Router ShelfStarting Up the Cisco 5814 Dial Shelf Troubleshooting the Router InstallationTroubleshooting the Power Subsystems Troubleshooting the Power SubsystemsDial Shelf Power Subsystem Router Shelf Power SubsystemRouter Shelf Cooling Subsystem Troubleshooting the Cooling SubsystemsTroubleshooting the Cooling Subsystems Dial Shelf Cooling Subsystem Troubleshooting the Processor Subsystems Troubleshooting the Processor SubsystemsTroubleshooting the Router Shelf Processor Subsystem Troubleshooting the I/O Controller CardTroubleshooting the Dial Shelf Interconnect Port Adapter Troubleshooting the Network Processor CardTroubleshooting the Port Adapters Troubleshooting the Dial Shelf Processor Subsystem Troubleshooting the Dial Shelf Processor SubsystemTroubleshooting the Dial Shelf Controller Card Troubleshooting Network Interfaces Troubleshooting Network InterfacesTroubleshooting the Dial Shelf Cards Table A-1 Cisco 5814 Dial Shelf Specifications Description System SpecificationsMB Dram System Specifications Backplane SpecificationsTable A-4 Backplane-Environmental Specifications Description Blower Assembly SpecificationsAustel Dial Shelf Controller Card SpecificationsDC PEM Specifications Filter Module Specifications Filter Module SpecificationsPage Table A-12 AC-Input Power Supply-Specifications Description AC Power Module SpecificationsESD Enhanced Power Supply SpecificationsCisco AS5800 Specifications A-11 Dial Shelf Interconnect Port Adapter Cables Cabling SpecificationsAC-Input Power Shelf Cables Cabling SpecificationsFigure A-3 DC Interconnect Cables AC-Input Power Shelf CablesFigure A-4 Monitor Cable Industry-Standard Wiring Plans Red Brown Slate Black Blue Orange Green Yellow Violet Industry-Standard Wiring Plans B-3 Page Cisco 5814 Dial Shelf Packaging Replacement Instructions Figure C-1 Cisco 5814 Packaging Detail Required Tools and Parts Powering Off the Cisco AS5800Required Tools and Parts Figure C-3 Dial Shelf Power Switches on the Pems Figure C-2 Router Shelf Power SwitchesDisconnect the DC power cables from your DC power source Figure C-6 Filter Module Monitor Cable DB-9 Connector Preparing to Repackage the Cisco 5814 Dial Shelf Preparing to Repackage the Cisco 5814 Dial ShelfRepackaging the Cisco 5814 Dial Shelf Repackaging the Cisco 5814 Dial Shelf D E 4-2 Startup Locating problem Router shelf Cooling subsystem Index
Related manuals
Manual 6 pages 32.91 Kb Manual 16 pages 55 Kb Manual 74 pages 39.08 Kb

AS5800 specifications

Cisco Systems has long been a leader in the networking and telecommunications field, and its AS5800 series of routers exemplify this tradition. The AS5800, along with the AS5850, AS5350, AS5400, and AS5300, provides robust solutions for service providers and enterprise-level networking applications. Each of these models has distinct features and characteristics that cater to the evolving demands of internet traffic and data processing.

The Cisco AS5800 is designed for high-capacity routing and optimized for broadband services. It supports a wide range of services, including voice, data, and video applications, making it a versatile option for service providers looking to deliver integrated solutions. It is equipped with advanced quality of service (QoS) features that ensure bandwidth is allocated effectively, holding strong even under heavy traffic conditions.

In comparison, the AS5850 offers superior processing capabilities and is typically utilized in larger-scale implementations. This model supports high-density interfaces, allowing numerous connections without compromising performance. Its architecture includes enhanced MPLS (Multiprotocol Label Switching) support, enabling more efficient traffic management and better utilization of network resources.

The AS5350 is known for its scalability and energy efficiency, ideal for voice-over-IP (VoIP) and media gateway applications. It supports various telephony features, such as protocol interworking and transcoding, making it a preferred choice for organizations focusing on digital voice technologies. The AS5300, while slightly older, continues to be a valuable asset for less demanding networks, offering reliable performance with VoIP capabilities and basic data applications.

The AS5400 bridges the gap between high-performance routing and operational efficiency. It incorporates Cisco's proprietary technologies to ensure seamless connectivity and robust failover systems. This model is highly regarded for its security features, protecting network integrity and providing peace of mind for businesses relying on sensitive data transfer.

Overall, Cisco’s AS5800 series showcases a progressive evolution of routing capabilities with enhanced features tailored for resilience, scalability, and performance. These routers not only address the technical needs of modern networks but also strategically position organizations for future growth in an increasingly digital world. Each model, with its unique attributes, continues to support the varied demands of global communication infrastructures.