13 zrgh/dn4 pxC
DEC (25) → BIN | j@/25 | BIN |
|
| @z | 11001 | |
|
|
|
|
HEX (1AC) | @h1AC |
|
|
→ BIN | @z | BIN | 110101100 |
→ PEN | @r | PEN | 3203 |
→ OCT | @g | OCT | 654 |
→ DEC | @/ |
| 428. |
|
|
|
|
(1010 − 100) | @z( |
|
|
⋅ 11 = | 1010 & |
|
|
[BIN] | 100)k11 |
|
|
| = | BIN | 10010 |
|
| ||
BIN (111) → NEG d111 = BIN | 1111111001 | ||
|
|
|
|
HEX (1FF) + | @h1FF |
|
|
OCT (512) = | @g+ |
|
|
| 512 = | OCT | 1511 |
HEX (?) | @h | HEX | 349 |
|
|
|
|
2FEC − 2C9E | jxM |
|
|
@h2FEC |
|
| |
⇒ M1 | &2C9E m HEX | 34E | |
+) 2000 − 1901 | 2000 &1901 |
|
|
⇒ M2 | m | HEX | 6FF |
— |
|
|
|
M = | tM | HEX | A4D |
| jxM |
|
|
|
|
|
|
1011 AND 101 = | @z1011 |
|
|
[BIN] | 4101 = BIN | 1 | |
|
|
|
|
5A OR C3 = | @h5A p |
|
|
[HEX] | C3 = | HEX | DB |
|
|
|
|
NOT 10110 = | @zn |
|
|
[BIN] | 10110 = | BIN | 1111101001 |
|
|
|
|
24 XOR 4 = | @g24 x |
|
|
[OCT] | 4 = | OCT | 20 |
|
|
|
|
B3 XNOR 2D = | @hB3 C |
|
|
[HEX] | 2D = | HEX FFFFFFFF61 | |
→ DEC | @/ |
| |
|
|
|
|
14 [: |
|
|
|
|
| ||
7°31’49.44” → [10] j7 [31 [ | 663 | ||
| 49.44 @: |
| ⎯ |
|
| 71250 | |
123.678 → [60] | 123.678 @: 123(40q40.8" | ||
| |||
|
| ||
3h 30m 45s + 3 [30 [45 |
| ||
6h 45m 36s = [60] +6 [45 [ |
| ||
| 36 = |
| 10(16q21." |
1234°56’12” + 1234 [56 [ |
| ||
0°0’34.567” = [60] | 12 +0 [0 |
|
|
|
|
| q |
16 | KL |
|
| |
|
|
| ||
V0 | = 15.3 m/s j15.3 k10 + |
| ||
t = 10 s |
| 2 @ZkK03 |
| |
| 1 | = ? m | k10 A= |
|
V0t + ⎯gt2 | U | 643.3325 | ||
| 2 |
| ||
125 yd = ? m j125@L05 = |
| |||
|
|
| UU | 114.3 |
|
|
|
|
|
•Physical constants and metric conversions are shown in the tables.
•Les constantes physiques et les conversions des unités sont indiquées sur les tableaux.
•Physikalische Konstanten und metriche Umrechnungen sind in der Tabelle aufgelistet.
•Las constants fisicas y conversiones métricas son mostradas en las tables.
•Constantes fisicas e conversões métricas estão mostradas nas tablelas.
•La constanti fisiche e le conversioni delle unità di misura vengono mostrate nella tabella.
•De natuurconstanten en metrische omrekeningen staan in de tabellen hiernaast.
•A fizikai konstansok és a metrikus átváltások a táblázatokban találhatók.
•Fyzikální konstanty a převody do metrické soustavy jsou uvedeny v tabulce.
•Fysikaliska konstanter och metriska omvandlingar visas i tabellerna.
•Fysikaaliset vakiot ja metrimuunnokset näkyvät taulukoista.
•Fysiske konstanter og metriske omskrivninger vises i tabellen.
•
•
•Konstanta fisika dan konversi metrik diperlihatkan di dalam tabel.
• | ͑ | ͑ | ͑ | ͑ ͑ | ͑ | ͑ | ͑ | ͑ | ͑ | ͟ |
K01–52
01: c, c0 (m | 19: ∝B | (J | 37: eV | (J) | |
02: G | (m3 | 20: ∝e | (J | 38: t | (K) |
03: gn | (m | 21: ∝N | (J | 39: AU | (m) |
04: me | (kg) | 22: ∝p | (J | 40: pc | (m) |
05: mp | (kg) | 23: ∝n | (J | 41: M(12C) (kg | |
06: mn | (kg) | 24: ∝∝ | - | (J s) | |
(J T ) | 42: h | ||||
07: m∝ | (kg) | 25: λc | (m) | 43: Eh | (J) |
08: 1u | (kg) | 26: λc, p | (m) | 44: G0 | (s) |
09: e | (C) | 27: σ | (W | 45: |
|
10: h | (J s) | 28: NA, L | 46: mp/me |
| |
11: k | (J | 29: Vm | (m3 | 47: Mu | (kg |
12: ∝0 | (N | 30: R | (J | 48: λc, n | (m) |
13: ε0 | (F | 31: F | (C | 49: c1 | (W m2) |
14: re | (m) | 32: RK | (Ω) | 50: c2 | (m K) |
15: α |
| 33: | 51: Z0 | (Ω) | |
16: a0 | (m) | 34: h/2me (m2 | 52: atm | (Pa) | |
17: R∞ | 35: γp |
|
| ||
18: Φ0 | (Wb) | 36: KJ | (Hz |
|
|
x |
|
|
|
17 N(ENG)
100 m ⋅ 10 k = ? 100 N34k |
| ||
|
| 10 N30= | 1'000. |
|
|
| |
18 nJ |
|
| |
|
| ||
→ [FIX, TAB = 1] j@J101 | 0.0 | ||
5 ⎟ 9 = ANS | 5 z9 = | 5 | |
⎯ | |||
|
|
| 9 |
|
| U | 0.6 |
ANS ⋅ 9 = | k9 =*1 | 5.0 | |
|
|
| 5 |
|
| 5 z9 = | ⎯ |
|
| 9 | |
|
|
| |
|
| U | 0.6 |
→ [MDF] | @n | 3 | |
⎯ | |||
|
|
| 5 |
ANS ⋅ 9 = | k9 =*2 | 2 | |
5⎯ | |||
|
|
| 5 |
|
| UU | 5.4 |
→ [NORM1] | @J13 | 5.4 | |
|
|
|
|
5 | ⋅ 9 = 5.5555555555555 ⋅ 10−1 ⋅ 9 |
| |
*1 ⎯ |
| ||
9 |
|
|
|
3 | ⋅ 9 = 0.6 × 9 |
|
|
*2 ⎯ |
|
| |
5 |
|
|
|
19 N(ALGB) |
|
| |
|
| ||
f(x) = x3 − 3x2 + 2 j;X@1 |
| ||
|
|
| |
x = −1 | N1S1 e | ||
x = −0.5 | N1S0.5 e | 1 | |
1⎯ | |||
|
|
| 8 |
|
|
| |
A2 + B2 | @*;AA |
| |
|
| +;BA |
|
A = 2, B = 3 | N1 |
| |
|
| 2 e3 e | H13 |
A = 2, B = 5 | N1 |
| |
|
| e5 e | H29 |
20 N(SOLVER) |
| ||
|
|
| |
sin x − 0.5 |
| ||
Start = 0 | N20 ee | 30. | |
Start = 180 | e180 ee | 150. | |
|
|
|
|
21 _HRvpcgoQ
GsijhfabS VU
|
| [34.567 = 1234(56 47." | ||
3h 45m – 1.69h | 3 [45 &1.69 = | |||
= [60] |
| @: |
| 2(3q36." |
sin 62°12’24” | v62 [12 [ |
| ||
= [10] |
| 24 = |
| 0.884635235 |
|
|
|
| |
24° → [”] |
| 24 [N4 | 86q400. | |
|
|
|
| |
1500” → [’] |
| 0 [0 [1500 |
| |
|
| N5 |
| 25. |
15 uEH |
|
| ||
|
|
|
| |
x = 6 | r = | j6 H4 r: | 7.211102551 | |
( y = 4 → ( | θ = | [°] @u | {: | 33.69006753 |
r = 14 | → ( | x = 14 H36 | X: | 11.32623792 |
( θ = 36 [°] | y = @E | Y: | 8.228993532 |
01: in→cm | 16: kg→lb | 31: calIT→J | ||||
02: cm→in | 17: °F→°C | 32: J→calIT | ||||
03: ft→m | 18: °C→°F | 33: hp→W | ||||
04: m→ft | 19: gal (US)→L | 34: W→hp | ||||
05: yd→m | 20: L→gal (US) | 35: ps→W | ||||
|
|
| ||||
06: m→yd | 21: gal (UK)→L | 36: W→ps | ||||
|
|
| ||||
07: mi→km | 22: L→gal (UK) | 37: kgf/cm2→Pa | ||||
08: km | → | mi | 23: fl oz(US) mL | 38: Pa | → | kgf/cm2 |
|
| → |
|
| ||
09: n mi→m | 24: mL→fl oz(US) | 39: atm→Pa | ||||
10: m→n mi | 25: fl oz(UK)→mL | 40: Pa→atm | ||||
11: acre→m2 | 26: mL→fl oz(UK) | 41: mmHg→Pa | ||||
12: m2→acre | 27: calth→J | 42: Pa→mmHg | ||||
13: oz→g | 28: J→calth | 43: kgf·m→N·m | ||||
|
|
| ||||
14: g→oz | 29: cal15→J | 44: N·m→kgf·m | ||||
|
|
|
|
| ||
15: lb→kg | 30: J→cal15 |
|
|
|
DATA
95
80
80
75
75
75
50
–=
x
σx =
n=
Σx = Σx2 =
sx =
sx2 =
b10 | S#a# 0 [SD] |
| |
@Z |
|
| 0. |
95 _ | DATA SET= | 1. | |
80 _ | DATA SET= | 2. | |
_ | DATA SET= | 3. | |
75 H3 _ | DATA SET= | 4. | |
50 _ | DATA SET= | 5. | |
tR | – | 75.71428571 | |
x= | |||
tp | σx= 12.37179148 | ||
tc | n= |
| 7. |
tg | Σx= |
| 530. |
to | Σx2= | 41'200. | |
tv | sx= | 13.3630621 | |
A= | sx2= 178.5714286 |
| ( | 95 | & |
– | ;R) | ||
(95 − x ) | + 50 = z;v | ||
⎯ ⋅ 10 | |||
sx | k10 | +50 | |
| = |
| 64.43210706 |
|
|
|
|