MartinLogan The Quest Speaker System user manual

Page 7

arrays. The test instrument needed an extremely accurate speaker, but Janszen found that the cone speakers of the period were too nonlinear in phase and amplitude re- sponse to meet his criteria. Janszen believed that electrostats were inherently more linear than cones, so he built a model using a thin plastic diaphragm treated with a conductive coating. This model confirmed Janszen's beliefs, for it exhibited remarkable phase and amplitude linearity.

Janszen was so excited with the results that he continued research on the electrostatic speaker on his own time. He soon thought of insulating the stators to prevent the destructive effects of arcing. By 1952 he had an electrostatic tweeter element ready for commercial production. This new tweeter soon created a sensation among American audio hobbyists. Since Janszen's tweeter element was limited to high frequency reproduction, it often found itself used in conjunction with woofers, most notably, woofers from Acoustic Research. These systems were highly regarded by all audio enthusiasts.

As good as these systems were, they would soon be surpassed by another electrostatic speaker.

In 1955, Peter Walker published three articles on electro- static loudspeaker design in Wireless World, a British electronics magazine. In these articles Walker demon- strated the benefits of the electrostatic loudspeaker. He explained that electrostatics permit the use of diaphragms that are low in mass, large in area, and uniformly driven over their surfaces by electrostatic forces. Due to these characteristics, electrostats have the inherent ability to produce a wide bandwidth, flat frequency response with distortion products being no greater than the electronics driving them.

By 1956 Walker backed up his articles by introducing a consumer product, the now famous Quad ESL. This speaker immediately set a standard of performance for the audio industry due to its incredible accuracy. However, in actual use the Quad had a few problems. It could not play very loud, it had poor bass performance, it presented a difficult load that some amplifiers did not like, its dispersion was very directional, and its power handling was limited to around 70 watts. As a result, many people continued to use box speakers with cones.

In the early 1960's Arthur Janszen joined forces with the KLH loudspeaker company and together they introduced the KLH 9. Due to the large size of the KLH 9, it did not have as many limitations as the Quad. The KLH 9 could play markedly louder and lower in frequency than the Quad ESL. Thus a rivalry was born.

Janszen continued to develop electrostatic designs. He was instrumental in the design of the Koss Model One, the Acoustech, and the Dennesen speakers. Roger West, the chief designer of the JansZen Corporation became the president of Sound Lab. When JansZen Corporation was sold, the RTR loudspeaker company bought half of the production tooling. This tooling was used to make the electrostatic panels for the Servostatic, a hybrid electrostatic system that was Infinity's first speaker product. Other companies soon followed; each with their own unique applications of the technology. These include Acoustat, Audiostatic, Beverage, Dayton Wright, Sound Lab, and Stax to name a few.

Electrostatic speakers have progressed and prospered because they actually do what Peter Walker claimed they would. The limitations and problems experienced in the past were not inherent to the electrostatic concept. They were related to the applications of these concepts.

Today, these limitations have been addressed. Advance- ments in materials due to the U.S. space program give designers the ability to harness the superiority of the electrostatic principle. Today's electrostats use advanced insulation techniques or provide protection circuitry. The poor dispersion properties of early models have been addressed by using delay lines, acoustical lenses, multiple panel arrays or, as in our own products, by curving the diaphragm. Power handling and sensitivity have been increased.

These developments allow the consumer the opportunity to own the highest performance loudspeaker products ever built. It's too bad Rice and Kellogg were never able to see just how far the technology would be taken.

Quest User's Manual

Page 7

Image 7
Contents Quest Speaker System ImportantContents Introduction Installation in Brief An Electrostatic Transducer Electrostatic ConceptHistory Page Full Range Operation Martin-Logan ExclusivesTransducer Integrity Vapor Deposited FilmCurvilinear Line Source Operation AC Power ConnectionStandard Connection Bi-Wire ConnectionHorizontal Bi-amping read Warning above Passive Bi-amplificationVertical bi-amping read Warning above Active Bi-Amplification Contouring SwitchesBass Contour Switch Presence Contour SwitchYour Room Room AcousticsTerminology Bipolar Speakers and Your Room Rules of ThumbControlled Horizontal Dispersion Room Acoustics and Dispersion InteractionsControlled Vertical Dispersion Multiple Large Panel Dispersion Three Major Types of DispersionWall Behind the Speakers PlacementListening Position Wall Behind the ListenerExperimentation Final PlacementFinal Word Solid Footing X-tra TweekEnjoy Yourself What size of an amplifier should I use with the Quests? QuestionsNo Output TroubleshootingAnalog Discs Compact Discs Recommended MusicGlossary Page Quest Specifications Page Delaware street Box Lawrence, kansas