Toshiba RS485, VF-AS1 Series instruction manual

Page 28

E6581315

Ex. 4 A VisualBaisc program for the ASCII mode communication (VisualBaisc is the registered trademark of the U.S. microsoft company.)

Accessing a parameter

1) Sample program executive example (Monitor of the output frequency (FD00))

Transmission and reception of the optional data like in the following example can be done by do- ing "the arrangement of the form control" of the explanation and "the description of the code" with mentioning later.

Reply data from the inverter are 1770H (6000d) with this example.

As for the unit of the output frequency (FD00),1= 0.01Hz, the Inverter is being operated in 60.00Hz.

2)Arrangement of the control on the form

Two TextBox, two Labels , three CommandButton and one MsComm are arranged on the form as follows.

27

Image 28
Contents Tosvert VF-AS1 Series RS485 Communication Function E6581315②Read first Safety precautions E6581315Contents BIT15 BIT8BIT7 BIT0 General outlines of the communication functionBit Word Data transmission specifications BIT2About the handling of received frames Communication protocolMOUBUS-RTU Binary mode 2FH Toshiba Inverter ProtocolData transmission format used in Ascii mode Data transmission formatINV-NO CMD Data5bytes Blank 28H Bytes Checksum areaINV-NO Data SUMData transmission format used in binary mode Command received Returned for the 57H W and 50H P commandsByte Bytes Sum 1 bytes Checksum not omissible 00H to FFHNorn 2FH Byte 4EH6EH BytesTransmission format of Block Communication Page Bytes Blank Start Code INV-NO Commands Dummy data is required for this commandReads the data with the specified communication number Block communication Computer InverterRFE03CR RFE03077BCRPage Format error Data transmission format does not match Transmission errorsCommunication There is no communication number that matches Broadcast communication function VF-AS1 Examples of the use of communication commands Ascii mode Computer → Inverter Inverter → ComputerFrom the computer H = 24d  trip status RFC90CRExamples of Communication programs =LENS$ For I=1 to L NextInput #1,B$ GotoIf Count 0 then T=TIMER 160 T=TIMER COUNT=TIMER-TPrint #1,B$ Page MSComm1.Output = Text2.Text & Chr13 End Sub End IfText2.Text = Text1.Text = End Sub MODBUS-RTU protocol Inverter number MODBUS-RTU transmission format Read commandCRC Write command Blank Command 1 byte5bytes Blank Command 1 byte Text size is 8 bytes fixed InverterError codes CRC GenerationBit counter = End Return CRCInter-drive communication E6581315 QWiring 2-wire RS485 communication Never use pin-7 P11 QWiring 4-wire RS485 communication)Page Parameters relating to the slave side example Proportional control of speed =0.01%Slave 100.00Hz 00% 90.00Hz 45.00HzSlave 100.00Hz1 00% 80.00Hz 40.00HzTransmission format for inter-drive communication INV-NO 1 byte Inverter numberCommunication parameters 0OFFMODBUS-RTU Baud rate,  , Parity  Inverter number„ Timer Time-out period Computer link PC → INVMaster INV To Slave INV INV → PC PC → INVFree notes Send waiting time , Use this function for the following case Commands and monitoring from the computer Communication commands commands from the computerPI OFF OFFElectric Power quantity Forcibly braked Preliminary excitationBrake release B Braking answer BAWire RS485 communication FA32 „ Terminal board output data FA50 „ FM analog output FA51„ AM analog output FA52 Output terminal no Specified data outputRFD00CR Monitoring from the computerUnit 0.01% N·m „ Input terminal board status FD06, FE06 RESInput terminal function selection 9 f119 BIT15„ Output terminal board status FD07, FE07 „ Inverter operating status 1 FD01, FE01 ST=ON ST=OFF„ Inverter operating status 2 FD42, FE42 „ Inverter operating status 3 FD49, FE49„ Inverter operating frequency mode status FD46, FE46 „ Inverter operating command mode status FD45, FE45Preset speed operation „ Cumulative operation time alarm monitor FE79 „ Alarm information monitor FC91Bit Specifications Remarks E6581315 „ Inverter model capacity code FB05 Model DataParameter Name Range Setting LED setting by communicationUtilizing panel LEDs and keys by communication „ Block Communication Function for LED Display Ascii LED display data code 00H-1FH are blank BlankFA10=0 Key utilization by communicationFA10=1 Parameter data EEP ROMPage Alarm code FE02 Frequency command value 01HzFE19 Torque command FE29 Input powerE6581315 FD50 Light-load high-speed torque 01% Tion FE80 Cumulative power on timeFE84 Binary input value option Appendix 1 Table of data codes CanSUB ESCAppendix 2 Response time Response time „ Data transmission timeAppendix 3 Compatibility with the communication function VF-A7Appendix 4 Troubleshooting Appendix 5 Connecting for RS485 communication RXA RXBTXA TXB

RS485, VF-AS1 Series specifications

The Toshiba VF-AS1 Series represents a significant advancement in the realm of variable frequency drives (VFDs), designed for various industrial applications that demand precision, efficiency, and reliability. With support for RS485 communication, the VF-AS1 Series fosters seamless integration into complex automation systems, making it the perfect choice for modern manufacturing environments.

One of the standout features of the Toshiba VF-AS1 Series is its versatile communication capabilities. The built-in RS485 port allows for easy connectivity with a range of devices, including PLCs (Programmable Logic Controllers) and HMIs (Human-Machine Interfaces). This ensures real-time monitoring and control of motor functions, enhancing operational efficiency and data analysis.

The VF-AS1 Series is engineered with advanced control technologies that provide exceptional motor performance. It incorporates vector control algorithms that optimize torque and speed regulation for both standard and permanent magnet motors. This results in precise motor control across a wide range of speeds and load conditions, ensuring optimum performance and energy savings.

Another noteworthy characteristic is its user-friendly interface. The VF-AS1 features a clear LCD display that allows for easy navigation and configuration. This intuitive design minimizes the learning curve for operators and technicians, facilitating quick setup and adjustments. Additionally, the series supports various programming options, catering to both novice users and experienced professionals.

Energy efficiency is a key priority in the design of the VF-AS1 Series. The drives are equipped with energy-saving features that help reduce overall power consumption and operational costs. With built-in sleep modes and dynamic energy feedback, these drives optimize energy usage based on demand, making them suitable for both constant and variable load applications.

In terms of safety and protection, the VF-AS1 Series incorporates various built-in safeguards, including overvoltage, undervoltage, and overcurrent protection. This comprehensive approach to safety not only protects the drive itself but also ensures the longevity of connected equipment.

Overall, the Toshiba VF-AS1 Series, with its robust feature set, advanced technologies, and focus on energy efficiency, proves to be a reliable choice for a wide range of industrial applications. Its integration of RS485 communication allows for enhanced connectivity and control, making it an excellent solution for modern automation needs.