Cisco Systems 3.6 specifications Multi Route Correlation Example

Page 35

Chapter 4 Advanced Correlation Scenarios

Multi Route Correlation

Multi Route Correlation

The correlation mechanism supports multi route scenarios, thereby eliminating false correlation, and guaranteeing that the correct root cause alarm is reported.

The correlation mechanism ensures that if multi-route segments exist then all the alarms found on a certain path (after eliminating invalid paths) are collected into an alarm set. These alarm sets are input into a multi route filtering algorithm which eliminates irrelevant alarms from these sets, and outputs the potentially root cause alarms. The root-cause alarm is determined from this group.

Multi Route Correlation Example 1

In this example, a link went down in the multi route segment between P1 and P4, and another link went down in the single route segment between P6 and PE2. As a result, CE1 lost connectivity to its management port, and became unreachable.

Figure 4-10 Multi Route Correlation Example 1

Device

 

 

 

unreachable

P2

P3

Link down

 

 

 

#2

CE1PE1P1 Link down

#1

P4

P6PE2

P5

MNG core

MNG core

182428

In this case the system will provide the following report:

Root cause—Device Unreachable. Link Down #2 is identified as the root-cause for Device Unreachable (CE1).

Note Link Down #1 is not the root-cause of the alarm because after it occurs there is still an alternative route from CE1 to its management port.

Multi Route Correlation Example 2

In this example, there are traffic engineering routes (RSVP) from router CE2, so that CE2 can reach P1 through only three possible paths, namely:

CE2->PE3->P7->P8->P1

CE2->PE3->P8->P1

CE2->PE3->P7->P1

Several links went down, and as a result, router CE2 became unreachable.

 

 

Cisco Active Network Abstraction Fault Management User Guide, Version 3.6 Service Pack 1

 

 

 

 

 

 

OL-14284-01

 

 

4-11

 

 

 

 

 

Image 35
Contents Americas Headquarters Page N T E N T S Multi Route Correlation Cloud VNE Alarm Sending Event Correlator Vii About This GuideViii Managing Events Fault Management OverviewBasic Concepts and Terms AlarmEvent Sequence EventFlapping Events Repeating Event SequenceTicket Correlation By Root CauseSequence Association and Root Cause Analysis Severity PropagationEvent Processing Overview OL-14284-01 Unreachable Network Elements Fault Detection and IsolationVNE Integrity Service Sources of Alarms On a DeviceAlarm Integrity Fault Detection and Isolation Integrity Service Cisco ANA Event Correlation and Suppression Event SuppressionCisco ANA Root-Cause Correlation ProcessCorrelation by Flow Root-Cause AlarmsCorrelation Flows Correlation by KeyCorrelating TCA Using WeightsDC Model Correlation Cache Connectivity Test Device Unreachable AlarmAdvanced Correlation Scenarios Device Unreachable Example Device Fault IdentificationIP Interface Failure Scenarios IP Interface Status Down AlarmCorrelation of Syslogs and Traps IP Interface Failure Examples All IP Interfaces Down AlarmInterface Example 10.200.1.2 General Interface Example Ethernet, Fast Ethernet, Giga Ethernet Examples ATM ExamplesIp interface status down Parameters Interface Registry ParametersMulti Route Correlation Example Multi Route Correlation11 Multi Route Correlation Example Generic Routing Encapsulation GRE Tunnel Down/Up GRE Tunnel Down/Up Alarm14 GRE Tunnel Down Example 1 Single GRE Tunnel GRE Tunnel Down Correlation Example15 GRE Tunnel Down Example 2 Multiple GRE Tunnels 16 Alarms Correlation to GRE Tunnel Down Ticket LDP Neighbor Down Alarm BGP Process Down AlarmMpls Interface Removed Alarm OL-14284-01 Types of Unmanaged Networks Supported Correlation Over Unmanaged SegmentsCloud VNE Supported When Logical Inventory Physical Inventory Cloud Correlation Example Cloud Problem AlarmOL-14284-01 Alarm Type Definition Event and Alarm Configuration ParametersGeneral Event Parameters Event Sub-Type Configuration ParametersRoot Cause Configuration Parameters Network Correlation Parameters Correlation Configuration ParametersFlapping Event Definitions Parameters System Correlation Configuration ParametersImpact Analysis Options Impact AnalysisAffected Severities Impact Report StructureAffected Parties Tab Impact Analysis GUIViewing a Detailed Report For the Affected Pair Detailed Report For the Affected Pair Accumulating Affected Parties Disabling Impact AnalysisUpdating Affected Severity Over Time Accumulating the Affected Parties In an AlarmAccumulating the Affected Parties In the Correlation Tree OL-14284-01 BGP process up Shut down on a device Supported Service AlarmsAll ip interfaces Sent when all IP interfaces True Warnin Shelf Out Link Over Utilized Rx DormantTx Dormant OL-14284-01 Event and Alarm Correlation Flow Figure B-1 Event Correlation Flow VNE level Software Function ArchitectureEvent Correlation Event Correlation FlowEvent Creation VNE level Post-Correlation Rule Event Correlator Alarm Sending Event CorrelatorCorrelation Logic Event Correlator
Related manuals
Manual 4 pages 36.46 Kb

3.6 specifications

Cisco Systems 3.6 marks a significant advancement in network technology, presenting an innovative suite of features and capabilities designed to enhance performance, security, and flexibility for modern networks. As a leader in networking solutions, Cisco continues to evolve its offerings, ensuring they meet the demands of businesses operating in increasingly complex environments.

One of the standout features of Cisco Systems 3.6 is the introduction of enhanced automation capabilities. Automation reduces the manual effort required for network management, allowing IT teams to focus on strategic initiatives rather than routine maintenance. The system leverages advanced machine learning algorithms to analyze network behavior, detect anomalies, and suggest optimizations, which enhances operational efficiency and uptime.

In terms of security, Cisco Systems 3.6 integrates robust cybersecurity measures directly into its architecture. It incorporates Cisco's SecureX framework, which provides centralized visibility and control across the entire security stack. This feature allows organizations to respond rapidly to threats, leveraging threat intelligence and automated response mechanisms to mitigate risks effectively.

Another notable characteristic is improved compatibility with cloud environments. With the rise of hybrid cloud models, Cisco Systems 3.6 offers seamless integration capabilities that enable businesses to connect their on-premises networks with public and private cloud infrastructures. This ensures greater flexibility and enhanced performance for cloud-based applications.

Cisco also emphasizes software-defined networking (SDN) with its updated platform. This approach allows for greater agility, enabling network administrators to programmatically manage resources through a centralized interface. SDN facilitates rapid deployment of services and applications, optimizing the overall user experience.

Cisco Systems 3.6 also boasts enhanced collaboration tools, fostering improved communication across teams. Featuring advanced video conferencing and messaging capabilities, it enhances productivity and streamlines processes, regardless of employee location. These tools are designed to support remote work environments, which have become increasingly important in today's business landscape.

Furthermore, energy efficiency is a core aspect of Cisco Systems 3.6. The system is designed to optimize power consumption and reduce overall operating costs, aligning with global sustainability goals. The efficient design prioritizes environmentally friendly practices while still delivering high performance.

In conclusion, Cisco Systems 3.6 represents a comprehensive evolution in networking technology, focusing on automation, security, cloud integration, SDN, collaboration, and energy efficiency. These features position Cisco as a pivotal player in supporting organizations as they navigate the complexities of digital transformation and the future of networking.