Grundig Digital Radio manual Measuring audience

Page 84

DIGITAL RADIO GUIDE

INTERNET RADIO

In order to promote their Internet services, broadcasters must communicate the all important web addresses to listeners. It is not the aim of this paper to explore marketing techniques, but suffice to say that broadcasters can achieve this in a variety of ways: during live programmes; in advertising campaigns on radio, TV, Internet or in print; and with e-mail marketing campaigns, press releases and giveaways.

Where Internet radio really comes into its own is as a marketing tool in its own right. Radio is an "experience product" which consumers must sample before they become regular listeners. There is evidence from the BBC and others that Internet radio players can boost listening figures for traditional radio by encouraging listeners to experiment and discover new programmes. Furthermore, some shows already have as many "catch-up" listeners online as they do for the original live broadcasts.

The BBC Radio Player provides consumers with lists of the most popular radio programmes and links to allow listeners to click through to shows related to their favourite genres. The BBC hopes that later versions of its player will offer hints for listening, along the lines of the "if you liked that, you may like this" services offered by Amazon and Q Magazine. As things stand, the BBC claims that its player adds millions to listening figures.

Internet radio is also a useful platform for collecting data and for building communities of dedicated listeners. Message boards and chat rooms create communities, with the added benefit that in order to register, listeners must fill out customer profile forms and give their contact details. Information gathered in online competitions can also contribute to listener databases for the purposes of market research.

6.9Measuring audience

One of the outstanding features of Internet radio is that audiences can be measured with precision and accuracy, as every hit of the keyboard key or mouse is logged. In conventional broadcasting, research results may depend on user behaviour, the methodology used and the audience sample taken, so these results are often open to argument and criticism.

Measuring web audience and understanding web user behaviour is vital to online businesses. Consumer statistics data is used to keep a record of a website's hits and traffic patterns and can help in understanding visitor behaviour. This data may provide the overall number of visits to the website during the specified time frame in terms of parameters such as Page Views, Unique Visitors, Most Popular Pages, Most Visited Documents, Most Visited Dynamic Pages and Forms, Top Downloaded Files, Most Accessed File Types, and others.

As modern websites tend to be dynamically created and designed, and can embed audio and/or video files and streams, Media Monitoring statistical evaluations are needed. Early attempts involved Arbitron16 Internet radio listening and the way the popularity of Internet radio stations was assessed. Arbitron's MeasureCast Rating gives total time spent listening (TTSL) estimates and provides regular weekly and monthly webcast audience reports. TTSL is the sum total of hours that listeners tune into a given station or portal (network).

For example, during the week of October 28 of 2002, Clear Channel Worldwide was the top ranked Web radio network with 1,566,183 Total Time Spent Listening (TTSL). MusicMatch was ranked number 2 with 1,205,175 and StreamAudio was third with

16http://www.arbitron.com/home/content.stm

84

Image 84
Contents Page Page Foreword Page Table of Contents Appendix C Glossary of Acronyms Introduction What is Digital Radio? Terrestrial in service date Satellite Service date Digital Radio SystemsDRM+ Why Digital Radio? Terrestrial Transmission Systems DRM Digital Radio MondialeBrief Description of the DRM System Overall designDistribution Interface Audio Source Coding DRM Source Encoding and DecodingDRM Source Decoding Channel coding and modulation Transmitter Considerations Over the air4 DRM+ DAB Eureka System DevelopmentPrincipal Advantages and Challenges System DescriptionChallenges DAB Development Worldwide as BelgiumCanada DenmarkFrance GermanyItaly SingaporeSouth Korea SpainSweden SwitzerlandUnited Kingdom Eureka 147 Main System Features Main System FeaturesInfrastructure Requirements Synergies with Other SystemsSynergies with Digital Radio Mondiale DRM Future Developments of DAB Synergies with Digital TelevisionDAB-Based Multimedia Broadcast Systems DMB T-DMB IP over Enhanced Packet Mode DAB-IPGerman DXB Project DAB as carrier of multichannel audio Enhanced Audio Codec, DAB+Digital Radio Guide Terrestrial Transmission Systems DAB Conceptual diagram of the outer coder and interleaver Types of ReceiversIn-Home Receivers In-Car ReceiversHandheld Receivers PC ReceiversList of manufacturers and their DAB products JVCTeac Japans Digital Radio Broadcasting ISDB-TSB OverviewMethods Audio encoding systemError correction system Multiplexing SystemTransmission channel encoding system Modulation method Transmission bandwidthsData Segment Spectra Hierarchical transmission and partial receptionPage Example of connected transmission three TS’s Parameter restrictions in connected transmissionTransmission capacities Information bit rates for the triple-segment transmission*5Characteristics ReceiversOverview of Services Trial receiversReceivers expected Multiple voice broadcastingDownload service experiment Outlook for the FutureBroadcasting of simplified moving images IBiquity HD Radio System HD Radio Standards Activity HD Radio AM and FM ReceiversHD Radio System Technical Design Overview Typical HD Radio Automobile ReceiversCore Services Main Program Service MPSStation Information Service SIS Advanced Application Services AASWaveforms and Spectra Hybrid WaveformFM Extended Hybrid Waveform FM All Digital Waveform HD Radio Subsystems 12 Hybrid AM HD Radio system spectrum allotment13 Functional Block Diagram of HD Radio System Receiver Systems RF/Transmission SystemFeatures Common to North American Digital Radio Systems Sound QualityMultipath Resistance Frequency Response Audio Quality RatingsMpeg AAC Infrastructure Requirements Deployment Status LicenseesIssues related to Terrestrial Systems Spectrum AvailabilityCase Study Allocations in Region 18 RRC-06 planning area DAB DVB-T19 T-DAB coverages in Band Entries Implications of Simulcasting HD Radio IbocCoverage DRM Digital Radio MondialeDigital Radio Guide Terrestrial Transmission Systems Issues Satellite Transmission WorldSpace ITU-R System DBroad Picture WorldSpace Coverage Map Transmission Footprints WorldSpace Up-link Coverage JVC Sirius Satellite Radio / XM Satellite Radio Sirius Overview Sirius Sdars Delivery System Sirius Constellation RaanSirius Ground Track Deployment Status TT&CContinental US Satellites Ground RepeatersMobile Broadcasting Corp. and TU Media Corp. ITU-R System E Internet Radio IR IntroductionBringing Radio to the Internet Internet Radio peculiarities Internet Radio as a complement to established radio services Streaming technology for radio services Internet-only stations IR Portals and Music PortalsServer-client Distribution networksWiMAX Multicasting P2P networksInternet Radio terminals and playback devices PodcastingInternet Radios relation with the traditional radio Measuring audience Digital Radio Guide Internet Radio Case studies 10.1 VRTVirgin Radio Summary and Conclusions Swedish Radio multichannel audio distributionSome Important Radio Portals BeethovenLaunch Music on Yahoo Launch.yahoo.com LiveIM Tuning Radio VH1Last FM MTV RadioSHOUTcast Some Sources for the Digital Radio Guide Etsi Cenelec IEC Digital Radio Guide Sources Major System Features Appendix a The Eureka 147 System System DescriptionOverview Modes of Operation Table A.1 Eureka 147 Transmission ParametersIII Data CapacityData Services Number of audio services in a multiplexSpectrum Issues Eureka 147 Channel Plans Table A.2 Example of possible number of programsAudio Quality Planning Parameters ITU DSB HandbookPropagation Properties VHF BandBand 1452-1492 MHz Recent system developments Multimedia Object Transport MOTDynamic Label Broadcast Website Slide ShowElectronic Programme Guide EPG DAB Virtual Machine DAB Java EtsiConditional Access DAB Receiver InterfacesSBR Layer File caching in the receiverTopNews IP datacasting in DAB Tpeg transport in DABAdvanced demodulation technique for Cofdm Table A.3 Etsi Standards relating to EurekaNumber Title Third EditionGSM / Pstn / Isdn / Dect Receiver Standards Table A.4 Receiver Standards for EurekaReference Title ITU Publications and RecommendationsAppendix B Relevant World Wide Websites BBC DABNasb 111 Glossary of Acronyms DRB DrdbDRM DRPIeee IfpiISDB-TSB ITUP2P PADPDA PNGTDM TdmaTMC TmccDisclaimer

Digital Radio specifications

The Grundig Digital Radio represents a significant advancement in radio technology, combining aesthetics, functionality, and a user-friendly interface. As a pioneer in the audio and electronics industry, Grundig has successfully integrated modern digital capabilities into its traditional radio design, appealing to both nostalgic listeners and tech-savvy users.

One of the standout features of the Grundig Digital Radio is its versatility in reception. With DAB+ (Digital Audio Broadcasting) technology, users can enjoy a wide array of radio stations with superior sound quality, free from the hiss and interference commonly associated with analog broadcasts. The inclusion of FM and AM bands ensures that listeners are not limited, providing access to local stations that may not yet have transitioned to digital.

The Grundig Digital Radio is designed with ease of use in mind. Its intuitive interface, often featuring a clear LCD display, allows users to navigate through stations and settings effortlessly. Many models also include a built-in tuner that automatically scans and presets available stations, simplifying the setup process. For those who appreciate personalization, some variants come equipped with customizable presets, allowing users to save their favorite stations for quick access.

Portability is another key characteristic of the Grundig Digital Radio. Many models are lightweight and come with built-in handles, making them ideal for on-the-go listening, whether it's in the garden, on the beach, or during a picnic. Battery options, alongside mains power, ensure that users can take advantage of their radios wherever they choose.

In terms of sound quality, Grundig utilizes advanced audio technologies to deliver rich and clear sound. Enhanced bass responses and treble controls allow users to fine-tune their listening experience to match their preferences. Furthermore, many models feature additional inputs, such as AUX and USB ports, enabling users to connect their smartphones or other devices, expanding their audio options.

Other notable characteristics include built-in alarms and timers, which make the Grundig Digital Radio a versatile companion for daily routines. Some models even support Bluetooth connectivity, allowing for seamless streaming from a variety of devices.

In summary, the Grundig Digital Radio embodies the perfect blend of traditional radio appeal and modern digital technology, offering versatility, ease of use, superior sound quality, and portability to meet the diverse needs of today’s listeners. Its well-thought-out features and user-friendly design make it an excellent choice for anyone looking to enhance their audio experience.