Lincoln Electric SVM186-A service manual Safety

Page 7

Return to Master TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

vi

SAFETY

vi

 

 

Electromagnetic Compatibility (EMC)

The size of the surrounding area to be considered will depend on the structure of the building and other activities that are taking place. The surrounding area may extend beyond the boundaries of the premises.

Methods of Reducing Emissions

Mains Supply

Welding equipment should be connected to the mains supply according to the manufacturer’s recommen- dations. If interference occurs, it may be necessary to take additional precautions such as filtering of the mains supply. Consideration should be given to shielding the supply cable of permanently installed welding equipment, in metallic conduit or equivalent. Shielding should be electrically continuous throughout its length. The shielding should be connected to the welding power source so that good electrical contact is maintained between the conduit and the welding power source enclosure.

Maintenance of the Welding Equipment

The welding equipment should be routinely maintained according to the manufacturer’s recommendations. All access and service doors and covers should be closed and properly fastened when the welding equip- ment is in operation. The welding equipment should not be modified in any way except for those changes and adjustments covered in the manufacturers instructions. In particular, the spark gaps of arc striking and stabilizing devices should be adjusted and maintained according to the manufacturer’s recommendations.

Welding Cables

The welding cables should be kept as short as possible and should be positioned close together, running at or close to floor level.

Equipotential Bonding

Bonding of all metallic components in the welding installation and adjacent to it should be considered. However, metallic components bonded to the work piece will increase the risk that the operator could receive a shock by touching these metallic components and the electrode at the same time. The operator should be insulated from all such bonded metallic components.

Earthing of the Workpiece

Where the workpiece is not bonded to earth for electrical safety, not connected to earth because of its size and position, e.g., ships hull or building steelwork, a connection bonding the workpiece to earth may reduce emissions in some, but not all instances. Care should be taken to prevent the earthing of the workpiece increasing the risk of injury to users, or damage to other electrical equipment. Where necessary, the con- nection of the workpiece to earth should be made by a direct connection to the workpiece, but in some countries where direct connection is not permitted, the bonding should be achieved by suitable capaci- tance, selected according to national regulations.

Screening and Shielding

Selective screening and shielding of other cables and equipment in the surrounding area may alleviate problems of interference. Screening of the entire welding installation may be considered for special applica- tions. 1

_________________________

1Portions of the preceding text are contained in EN 60974-10: “Electromagnetic Compatibility (EMC) product standard for arc welding equipment.”

L10093 3-1-96H

Image 7
Contents Precision TIG ISAFETYi Fumes and Gases SafetyFor Electrically Powered equipmentSûreté Pour Soudage a LʼArc Précautions DE SûretéElectromagnetic Compatibility EMC Safety Master Table of Contents for ALL Sections Table of Contents Installation Section Input Single Phase only InstallationK2533-2 Input at Rated Output Model Height Width Depth WeightTilting Safety PrecautionsSelect Suitable Location Mounting Lifting and MovingInput and Grounding Connections Return Section TOC Input Reconnect ProcedureConnections for Stick Smaw Welding Connections for TIG Gtaw WeldingPrecision TIG Table of Contents Operation Section Operation Recommended Processes and EQUIP- Ment Product DescriptionControl Functionality Figure B.1 Control PanelPOWER-UP Sequence Machine Rating Plate Case Rear ComponentsOperating Steps Welding in TIG ModePulse TIG Control Operation Turn the power switch to on Welding in Stick ModePrecision TIG Table of Contents Accessories Section Standard Equipment Packages AccessoriesTable C.1 Table C.2 Factory Installed OptionsK2348-1 Under-Storage Cart Field Installed OptionsTable of Contents Maintenance Section Spark GAP Adjustment MaintenanceSafety Precautions Routine and Periodic Maintenance1TABLE of CONTENTS-THEORY of Operation Section E-1 Theory of Operation Input Power CircuitGeneral Description Protected Output Rectification Feedback ControlFigure E.2 High Voltage/High Frequency Circuit High Voltage / High Frequency CircuitFigure E.5 DC Welding Current Generation DC Welding OutputFigure E.6 AC Square Wave Welding Current Generation AC Welding OutputFigure E.7 SCR Operation SCR OperationVAC Receptacle Protective CircuitsThermal Protection Overload Protection1TABLE of Contents Troubleshooting and Repair F-1 HOW to USE Troubleshooting Guide Troubleshooting and RepairWorkstations PC Board Troubleshooting ProceduresPerform the T1 Transformer Amptrol is depressed Troubleshooting and Repair Perform the SCR Bridge Test Possible Areas Misadjustments Problems SymptomsRecommended Course of Action Troubleshooting and Repair Troubleshooting and Repair Problems Symptoms Electric Shock can Perform the SCR Bridge Test Stick electrode Blasts Off when Weld current may be set too Test Description High Frequency Circuit Disable ProcedureMaterials Needed Figure F.1 Spark GAP Assembly ProcedureT1 Transformer Test T1 Transformer Test Primary Windings Primary Voltages Precision TIG Static SCR Test Precision TIG 225 Control Test ProcedureCase Cover Removal and Replacement Procedure Precision TIG Active SCR Test Active SCR Test Figure F.6 SCR Gate Locations Precision TIG Scope Settings Normal Open Circuit Voltage Waveform AC TIG ModeNormal Open Circuit Voltage Waveform DC TIG Mode Normal Open Circuit Voltage Waveform AC Stick Mode Normal Open Circuit Voltage Waveform DC Stick Mode Typical Output Voltage Waveform Machine Loaded AC TIG ModeMachine Loaded to 180 Amps AT 16VDC DC TIG Mode Machine Loaded to 180 Amps AT 26VDC AC Stick ModeDC Stick Mode Troubleshooting and Repair Precision TIG SCR Bridge Assembly Removal and Replacement Procedure Figure F.7 Case Back Mounting Screws SCR Bridge AssemblyProcedure Plug J2 Removed Replacement Procedure Precision TIG Polarity Switch Removal and Replacement Procedure Removal Procedure Polarity SwitchReplacement Procedure Precision TIG High Voltage Transformer Removal and Replacement Procedure Transformer Secondary Leads High Voltage TransformerFigure F.12 High Voltage Transformer Mounting Insulators Precision TIG 53F-53 Perform the SCR Bridge Assembly Replacement Procedure Input Idle Amps Retest After RepairRecommended Meters for Machine Output Tests Precision TIG Table of Contents Diagram Section Electrical Diagrams Schematic Complete Machine ALL Codes G5647 Schematic Control PC Board #1 G5640 Schematic Control PC Board #2 G5640 Schematic Control PC Board #3 G5640 PC Board Assembly Control #1 G5641 PC Board Assembly Control #2 G5641 1B0-S22530 PC Board Assembly Bypass L10121

SVM186-A specifications

The Lincoln Electric SVM186-A is a versatile and highly efficient welding machine that stands out in the competitive landscape of industrial welding equipment. Designed to meet the needs of both professionals and hobbyists, this machine combines advanced technology with robust construction, delivering outstanding performance in various welding applications.

One of the standout features of the SVM186-A is its multi-process capability. This welding machine can handle MIG, TIG, and Stick welding processes, making it suitable for a diverse range of projects, from light fabrication to heavy-duty work. This flexibility reduces the need for multiple machines, saving time and space for users who require versatility in their welding operations.

The SVM186-A is powered by a reliable and durable inverter technology, which ensures a stable arc and efficient operation across different materials, including stainless steel, aluminum, and mild steel. This inverter technology not only enhances performance but also reduces energy consumption, making it an environmentally friendly choice.

Another notable characteristic of the SVM186-A is its user-friendly interface. The digital display provides real-time information on voltage and wire feed speed, allowing welders to easily adjust settings for optimal results. This intuitive control panel design makes it accessible for both novice welders and seasoned professionals who value precision.

The machine is also built with safety features in mind. It comes equipped with overcurrent protection and thermal overload protection to prevent damage during operation. This ensures that users can work confidently, knowing that the equipment is designed to handle demanding tasks while prioritizing safety.

Portability is another advantage of the SVM186-A. Weighing in at a relatively light weight compared to other industrial welders, this machine is designed for ease of transport. Whether working on-site or in a workshop, welders can easily move the equipment as needed.

In summary, the Lincoln Electric SVM186-A is a sophisticated welding machine that merges technology and practicality. Its multi-process capability, inverter technology, user-friendly interface, safety features, and portability make it a top choice for those seeking dependable and efficient welding solutions. Whether for professional fabrication or personal projects, the SVM186-A is equipped to handle the demands of modern welding tasks with exceptional ease and effectiveness.