Friedrich 2009, 2008 service manual Testing the Coil, Checking the Reversing Valve

Page 27

TESTING THE COIL

WARNING

ELECTRIC SHOCK HAZARD

Unplug and/or disconnect all electrical power to the unit before performing inspections, maintenances or service.

Failure to do so could result in electric shock, serious injury or death.

The solenoid coil is an electromagnetic type coil mounted on the reversing valve and is energized during the operation of the compressor in the heating cycle.

1.Turn off high voltage electrical power to unit.

2.Unplug line voltage lead from reversing valve coil.

3.Check for electrical continuity through the coil. If you do not have continuity replace the coil.

4.Check from each lead of coil to the copper liquid line as it leaves the unit or the ground lug. There should be no continuity between either of the coil leads and ground; if there is, coil is grounded and must be replaced.

5.If coil tests okay, reconnect the electrical leads.

6.Make sure coil has been assembled correctly.

NOTE: Do not start unit with solenoid coil removed from valve, or do not remove coil after unit is in operation. This will cause the coil to burn out.

CHECKING THE REVERSING VALVE

NOTE: You must have normal operating pressures before the reversing valve can shift.

WARNING

HIGH PRESSURE HAZARD

Sealed Refrigeration System contains refrigerant and oil under high pressure.

Proper safety procedures must be followed, and proper protective clothing must be worn when working with refrigerants.

Failure to follow these procedures could result in serious injury or death.

Check the operation of the valve by starting the system and switching the operation from “Cooling” to “Heating” and then back to “Cooling”. Do not hammer on valve.

Occasionally, the reversing valve may stick in the heating or cooling position or in the mid-position.

When sluggish or stuck in the mid-position, part of the discharge gas from the compressor is directed back to the suction side, resulting in excessively high suction pressure.

Should the valve fail to shift from coooling to heating, block the air flow through the outdoor coil and allow the discharge

pressure to build in the system. Then switch the system from heating to cooling.

If the valve is stuck in the heating position, block the air flow through the indoor coil and allow discharge pressure to build in the system. Then switch the system from heating to cooling.

Should the valve fail to shift in either position after increasing the discharge pressure, replace the valve.

Dented or damaged valve body or capillary tubes can prevent the main slide in the valve body from shifting.

If you determing this is the problem, replace the reversing valve.

After all of the previous inspections and checks have been made and determined correct, then perform the “Touch Test” on the reversing valve.

Reversing Valve in Heating Mode

25

Image 27
Contents WallMaster Thru-the-Wall Technical Support Contact Information Table Of Contents Your safety and the safety of others are very important Important Safety InformationRefrigeration System Hazards Property Damage Hazards Introduction5th Digit Alphabetical Modifier 6th Digit Voltage 1st Digit Function2nd Digit Type 3rd & 4th Digits Approximate BTU/HR Cooling2008 / 2009 Performance Data Fire Hazard Electric Shock HazardFunctional Components How to operate the Friedrich WallMaster To set the timer Using the remote control Activating Test Mode Error Code ModeTesting the Electronic Control Checking Room TemperatureE7 Motor Operation E9 Heat Pump Failure Error Codes Listing for WS ModelsError Codes Listing for WE/WY Models Reboot the Control PanelSystem Control Switch Test For Units with Rotary Controls System Control SwitchComponents Testing Electronic Control OperationThermostat Capacitor Check with Capacitor Analyzer CapacitorsDefrost Thermostat Defrost Bulb LocationDrain PAN Valve Heating ElementRefrigeration System Sequence of Operation Risk of Electric Shock Sealed Refrigeration System RepairsEquipment Required Equipment Must be CapableMethod Of Charging / Repairs Burn HazardFreeze Hazard Overcharged Refrigerant Systems Undercharged Refrigerant SystemsRestricted Refrigerant System Capillary Tube Systems Hermetic Components CheckMetering Device Check ValveReversing Valve DESCRIPTION/OPERATION Checking the Reversing Valve Testing the CoilProcedure For Changing Reversing Valve Touch Test in Heating/Cooling CycleExplosion Hazard Compressor Checks Single Phase Resistance Test Ground TestChecking Compressor Efficiency Compressor Replacement Recommended procedure for compressor replacementHigh Temperatures Rotary Compressor Special Troubleshooting and Service AIR Filter Routine MaintenanceCoils and Base PAN Excessive Weight Hazard Blower Wheel / Housing / Condenser FAN / ShroudFront Cover Sleeve / DrainCooling only Room AIR Conditioners Troubleshooting Tips Replace fuse, reset breaker. If repeats, check Fused separately Oversized unit Operate in MoneySaver position Heat Pump Troubleshooting Heat Pump Troubleshooting Malfunction of Valve Normal Function of ValveWS14B10A-E WS10B30A-D WS13B30B-E,B-F WS16B30A-D,A-E WE10B33C-A WE13B33C-A WE16B33C-A WY10B33C-A WY13B33C-A WE10B33A-C WE13B33B-D,B-E WE16B33A-C,A-D WY10B33A-C,A-D WY13B33A-C,A-D Installation Accessories Mounting Hardware Provided Wall PreparationDescription QTY MECHANICALCUT/SEVER Hahazard Installation RequirementsMECHANICALCUT/SEVER Hazard Sealing Gasket Installation Instructions Mechanical Hazard MECHANICALCUT/SEVER Hazard Installation Instructions for Internal Drain KIT IDKExcessive Weight Hazard MECHANICALCUT/SEVER Hazard MECHANICALCUT/SEVER Hazard MECHANICALCUT/SEVER Hazard Second Through Fifth Year First YearPage Technical Support Contact Information Friedrich AIR Conditioning CO
Related manuals
Manual 68 pages 41.17 Kb Manual 60 pages 45.7 Kb

2009, 2008 specifications

Friedrich 2008 and 2009 represent significant advancements in heating and cooling technology, particularly in the realm of air conditioning systems. Friedrich is known for producing robust and efficient HVAC solutions tailored for both residential and commercial applications. These models are particularly noteworthy for their innovative features and energy-efficient technologies that enhance user comfort and lower operational costs.

One of the main characteristics of the Friedrich 2008 and 2009 models is their emphasis on energy efficiency. Both units are designed to meet or exceed Energy Star standards, which indicates that they use less energy compared to standard models, contributing to greener living solutions. The incorporation of efficient compressors and high SEER (Seasonal Energy Efficiency Ratio) ratings ensures that users save money on their electricity bills while enjoying optimal cooling performance.

The units also feature advanced inverter technology, which allows for variable speed operation. This means that the system can adjust its cooling capacity based on the current temperature needs, resulting in more consistent comfort while reducing wear and tear on the equipment. Additionally, the inverter technology operates more quietly compared to traditional systems, making these models suitable for both home environments and commercial settings.

Friedrich 2008 and 2009 also provide users with enhanced control options. The inclusion of smart technology and Wi-Fi connectivity allows for remote monitoring and temperature adjustments via smartphones or tablets. Users can create schedules, set temperature preferences, and receive maintenance alerts, contributing to a more user-friendly experience.

Moreover, these models are designed with robust construction, featuring durable materials that withstand various weather conditions. Their compact footprint and sleek design make them suitable for window installation, while an array of sizes accommodates spaces of different dimensions.

Additionally, the air filtration systems in Friedrich 2008 and 2009 units improve indoor air quality. They effectively capture dust, allergens, and other particulates, ensuring a healthier environment for occupants.

In summary, Friedrich 2008 and 2009 models stand out for their energy efficiency, innovative inverter technology, smart controls, and robust construction. With a focus on user comfort and environmental responsibility, these models provide reliable solutions for effective heating and cooling in diverse applications.