Agilent Technologies 6811B, 6813B, 6812B manual Introduction, Preliminary Checkout

Page 31

3

Turn-On Checkout

Introduction

Successful tests in this chapter provide a high degree of confidence that the ac source is operating properly. For verification tests, see appendix B. Complete performance tests are given in the Service Guide.

NOTE: This chapter provides a preliminary introduction to the ac source front panel. See Chapter 4 for more details.

Preliminary Checkout

WARNING: LETHAL VOLTAGES. Ac sources can supply 425 V peak at their output. DEATH on contact may result if the output terminals or circuits connected to the output are touched when power is applied.

1.If you have not already done so, connect the power cord to the ac source and plug it in.

2.Turn the front panel power switch to ON (1).

3.The ac source undergoes a self-test when you turn it on. The following items appear on the display:

a.A brief pattern that lights all display segments, followed by the model number and the software revision number.

b.The display then goes into the meter mode with the Dis annunciator on, and all others off. "Meter mode" means that the VOLTS digits indicate the output voltage and the FREQ digits indicate the output frequency. The voltage will be at or near zero and the frequency will be at 60 Hertz.

Note: If the ac source detects an error during self-test, the Err anunciator on the display will be lit. Pressing the Shift and Error keys will show the error number. Go to "In Case of Trouble" at the end of this chapter.

4.Check that the ac source fan is on. You should be able to hear the fan and feel the air coming from the unit.

5.Press Output on/off once. The Dis annunciator will go off and the CV annunciator will go on.

6.Turn the unit off.

31

Image 31
Contents User’s Guide AC Power Solutions Agilent Models 6811B, 6812B, and 6813BCertification Warranty InformationGeneral Safety SummarySafety Symbols EMC DeclarationPrinting History Acoustic Noise InformationTable of Contents Performing the Verification Tests Performing the Calibration ProcedureEntry Keys Examples of Front Panel Programming IntroductionLine Voltage Conversion Error Number ListPage Topic Document OrientationLocation Options Safety ConsiderationsOptions and Parts Earlier AC Source ModelsOperator Replaceable Parts DescriptionAgilent Part Number Capabilities Front Panel/Remote OperationModel Description Steady-state Output Characteristic in real-time mode Steady-state Output CharacteristicTypical Peak Current Output Capacities Peak Current/Dynamic Power CapabilityPeak Current Limit Peak Inrush ExampleCapacitance in μF 127 254 Ipeak settingReal Time Regulation RMS Current Limit CircuitVoltage Regulation Output ImpedanceOutput Coupling Page Items Supplied CleaningInspection Damage Packaging MaterialNot block the fan exhaust at the rear of the unit LocationBench Operation Rack MountingInput Connections Installing the Power CordInput Source and Line Fuse Output Connections Connecting the Power CordCurrent Ratings Wire ConsiderationsRemote Sense Connections Voltage DropsRemote Sense Connections Digital Connections Trigger ConnectionsRemote Sensing and OVP Considerations Controller Connections Gpib ConnectorRS-232 Data Format Interface CommandsRS-232 Connector RS-232 InterfaceNull Modem Interface Lines Response Data Terminator Hardware HandshakePreliminary Checkout IntroductionCheckout Procedure Using the KeypadPress 1, 6, 0, Enter Press 1, 2, 0, EnterPress Output On/Off Press ProtectCase of Trouble Error MessagesSelftest Errors Power-On Selftest ErrorsMay appear at runtime Runtime Error MessagesLine Fuse IndicatesPage Front Panel, Overall View Front Panel DescriptionAC+DC System Keys Dis lay Command FunctionImmediate Action Keys Function KeysScrolling Keys Display Display Command FunctionMeter Display Keys Display MeasurementList Output Control KeysRST Protclear Protection and Status Control KeysCLS Abort Trigger and List Control KeysInitimmed IMMThrough Are used for entering numeric values Is the decimal Entry KeysExamples of Front Panel Programming Setting the Output Voltage AmplitudeSet the output to 120 V rms as follows Action Setting the Output FrequencySetting the DC Offset To verify the output, use the meter menuClearing Protection Conditions Setting a Protection FeatureOvercurrent protection feature as follows Bit Number Bit WeightPulse Using Transient Voltage ModesVoltm Step Step TransientPulse Transient VolttDcycle List TransientVoltm Pulse WidthVolt EOL Step Auto Trigger Delays and Phase SynchronizationVoltm Fixed List Count Dwel Dwel EOL VoltExample Display Syncsour PhaseSyncphas Initimmed Programming Slew Rates Using Slew Rates to Generate WaveformsSlewt Voltm FixedSlew Step SlewmCurrpeak Syncsour Phase SyncphasMeasuring Peak Inrush Current CurrlevAction Display To set the Gpib address, proceed as follows Setting the Gpib Address and RS-232 ParametersTo configure the RS-232 interface, proceed as follows Saving and Recalling Operating StatesTable A-1. Performance Specifications1 SpecificationsTable A-1. Performance Specifications Table A-2. Supplemental Characteristics Supplemental CharacteristicsTrig Out HC TTL output Trig In 10k pullup Table A-3. Operation Below 45 Hz Operation Below 45 HzPage Equipment Required Verification and CalibrationTable B-1. Equipment Required Test SetupRecommended Model Action Normal Result Turn-On Checkout ProcedurePerforming the Verification Tests AC Voltage Programming and Measurement AccuracyVolt 50, Currrange LOW, Currlev DC Voltage Programming and Measurement AccuracyRMS Current Accuracy Test Volt 0, Outpcoup DC, OffsetRMS Current Measurement Accuracy Table B-2. Agilent 6811B Verification Test RecordTable B-3. Agilent 6812B Verification Test Record DC Programming and Measurement AccuracyTable B-4. Agilent 6813B Verification Test Record Table B-3Front Panel Calibration Menu Performing the Calibration ProcedureFront Panel Calibration Enable Calibration ModeCalibrating and Entering Voltage Offset Values Calibrating and Entering AC rms Voltage Gain Values Calibrating and Entering DC Voltage Gain ValuesCallev P4 Calibrating and Entering rms Current Values Calibrating the OVP Trip PointOFF Calibrating and Entering rms Current Measurement ValuesCalibrating the Output Impedance Saving the Calibration ConstantsCalibration Over the Gpib Changing the Calibration PasswordCalibration Error Messages Table B-5. Gpib Calibration Error MessagesFigure B-2. Calibration Program Listing Sheet 1 Figure B-2. Calibration Program Listing Sheet 2 Figure B-2. Calibration Program Listing Sheet 3 Page Table C-1. Error Numbers Error Number ListError Messages Error Messages C Page Check the Line Jumpers all Models Check the Jumper Wire Model Agilent 6811B/6812B onlyCheck the Power Transformer Connector all Models Open the UnitFigure D-1. Line Voltage Conversion Components Close the UnitIndex Index Index Japan United States Latin AmericaCanada Australia/New Zealand Europe Asia PacificManual Updates
Related manuals
Manual 187 pages 38.86 Kb Manual 20 pages 27.01 Kb Manual 3 pages 27.44 Kb

6812B, 6811B, 6813B specifications

Agilent Technologies, a leader in electronic test and measurement equipment, offers a range of powerful signal sources including the 6843A, 6834B, 6814B, 6813B, and 6811B models. These instruments are designed to support various applications in research, development, and manufacturing, providing precise signal generation capabilities.

The Agilent 6843A is a versatile signal generator known for its exceptional frequency range and modulation capabilities. It supports an extensive bandwidth, making it ideal for applications that require high-frequency signal generation. With its superior phase noise performance, the 6843A is an excellent choice for radar, wireless communications, and electronic warfare applications. The instrument features an intuitive user interface, allowing engineers to set parameters quickly and efficiently.

Next, the Agilent 6834B offers exceptional performance characteristics, including high output power and low distortion. This signal generator is particularly noted for its ability to produce complex modulation formats, making it suitable for testing advanced wireless communication systems. With a reliable and stable output, the 6834B ensures accurate and repeatable measurements, which is vital for thorough testing processes.

The 6814B model stands out for its dual-channel capabilities, allowing users to generate simultaneous signals for testing multiple components or systems. This feature significantly enhances testing efficiency and flexibility for engineers. With built-in arbitrary waveform functionality, users can create custom waveforms, making the 6814B suitable for a wide range of applications including device characterization and signal processing research.

For those seeking a more compact solution, the Agilent 6813B provides essential signal generation features without compromising on performance. It is designed for a variety of applications across telecommunications and consumer electronics, featuring a straightforward interface and robust performance metrics.

Lastly, the 6811B is an entry-level yet capable model that supports a broad spectrum of testing needs. Perfect for educational and laboratory environments, it provides essential functionalities required for effective signal generation and analysis.

Overall, Agilent Technologies' 6843A, 6834B, 6814B, 6813B, and 6811B signal generators offer an array of features and technologies that cater to various application needs. Their precision, reliability, and user-oriented designs position them as invaluable assets in any testing environment, ensuring engineers can carry out their work with confidence and accuracy.