Sterling STT 800 manual STT Return air cooler optional, Pre air cooler optional

Page 61

STT 800

6.3. Return air cooler (optional)

F

A return air cooler is generally required in cases in which the return air temperature is over 65 °C (149°F).

A return air cooler improves the efficiency of the drying cells.

The return air cooler reduces the return air temperature to a defined value. The return air temperature is set at the operation panel.

&

The lower the value chosen for the return air temperature, the better the efficiency of the drying cells.

The dryer is automatically switched off if temperature exceeds 80 °C (176°F)

Return air temperature is continuously monitored; the return air cooler is activated only when nee- ded. If the return air temperature exceeds the set value (e.g. due to interruption in the cooling wa- ter supply or soiling), an alarm message is given.

The return air cooler can be connected to a coolant circuit or to the water mains network.

6.4. Pre air cooler (optional)

The pre air cooler reduces the pre air temperature to a defined value. The pre air temperature is set at the operation panel. Pre air temperature is continuously monitored; the pre air cooler is acti- vated only when needed. If the pre air temperature exceeds the set value (e.g. due to interruption in the cooling water supply or soiling), an alarm message is given.

The pre air cooler can be connected to a coolant circuit or to the water mains network.

SM2-625

Functional description 6-4

Image 61
Contents Sterling Material Processing Parts and Service Department Edition 06/02 Order confirmation number STT Sterling Material ProcessingSTT Table of Contents Transport, Assembly and Storage Spare parts list Dehumidified Air Dryer General InformationGeneral Information Dehumidified Air Dryer Legal basis Dehumidified Air Dryer Explanations and informationFields of applications Safety instructions Safety instructionsGeneral Dehumidified Air Dryer For your safetyOperation AssemblyMaintenance Dehumidified Air Dryer For the safety of the devices Start-up Start-upKey assignment STT Control systemIndicator lamp messages STT Flow chartOperation statuses STT Switching on the dryerSTT Viewing the software-version PasswordsLogout LoginEdit STT Basic parameters Timer on/offTurning the devices on/off Dryer on/offSTT Regeneration Heater Act STT Entering dryer valuesUsed air Act Dew point maxPre air cooler Act Pre air cooler TargetHopper entry X Target STT Entering hopper valuesHopper entry X Act Granules Act. CF Granules Target % = C FSTT Observing processing status Valve block moved in/moved out/errorDate STT Setting date and timeTime Contrast STT Viewing/changing language and contrastLanguage Select Parameters STT Changing parametersRun on time drying blower -- 300 sec ParametersXX on 0000 OFF 0000 XX = day Mo-Su STT Setting the timerExample Select Main menu STT Starting continuous operationSelect System runtime STT Viewing system runtimeSystem runtime XX hSTT Switching the dryer off Error and error correction Error and error correctionLED Alarm View Total messages NumberWaiting messages DeleteOverflow warning On/Off OverflowSafety Temperature Limiter has been Activated Main Switch is OffSafety Switch Regeneration Blower Has Been Actuated Safety Switch Drying Blower Has Been ActuatedExcess Temperature Regeneration Heater Temperature Measurement Regeneration Heater DefectiveInsufficient Temperature Regeneration Heater Safety Switch Regeneration Heater Has Been ActuatedExcess Temperature Drying Heater Temperature Measurement Drying Heater DefectiveInsufficient Temperature Drying Heater Safety Switch Drying HeaterExcess Temperature Granules Hopper Temperature Measurement Granules Defective HopperValve Error Hopper Temperature Measurement Pre Air DefectiveMaintenance MaintenanceSTT STT Maintenance intervals STT Cleaning/renewing the air filters Return air filter Regeneration air filter Filter of the electrical cabinet STT Tensioning the V-belts Blower regeneration heater / Blower drying heater Disposing of the drying agent Servicing the accessoriesHigh-pressure blowers with frequency converter operation STT Changing the battery of the control system STT STT Resetting the control values Functional description Functional descriptionSTT Dryer Dew point dependent regeneration switch optionalSTT Drying hopper optional Pre air cooler optional STT Return air cooler optionalAutomatic motor flaps optional STT Hopper heaters optionalConnection to a pneumatic conveying system optional Transport, Assembly and Storage Transport, Assembly and StorageWith a fork lift truck Dehumidified Air Dryer Transport and PackingWith a workshop crane Storage Dehumidified Air Dryer AssemblyAssembly instructions Assembly instructionsConnection of the air coolers optional Dehumidified Air Dryer Electrical connection Technical Data Technical DataBasic Equipment Optional EquipmentDimension sheet Spare parts list Spare parts listSpare parts list Pos. ID-number Description Accessories Switching Cabinet and Operating UnitReturn air cooler optional Flaps optionalElectrical manual Electrical manualAccessories AccessoriesAccessories Entering values on the OP 7 Entering Values Entering Numerical Values Entering Alphanumeric Values Step Procedure Entering Symbolic Values Accessories Flap control with Fuzzy-Logic Control unit flap Flap control with Fuzzy-Logic

STT 800 specifications

The Sterling STT 800 is an advanced thrust vector control system that has garnered significant attention in the aerospace and defense sectors. Designed to enhance the performance of various aircraft, including drones and missiles, the STT 800 combines cutting-edge technologies and innovative design to provide operators with exceptional maneuverability and precision.

One of the primary features of the Sterling STT 800 is its state-of-the-art thrust vectoring capability. This technology allows the aircraft to change the direction of its thrust, enabling unparalleled agility and control during flight. By directing engine thrust both horizontally and vertically, the STT 800 can perform complex aerial maneuvers that standard aircraft would struggle to achieve. This capability is critical for modern combat scenarios, where quick evasive actions and sharp turns can mean the difference between mission success and failure.

The STT 800 is built with lightweight, robust materials that enhance its durability while minimizing overall weight. This design philosophy ensures that the system remains operable under extreme conditions, including high-speed flight and challenging environmental situations. Advanced materials not only contribute to the overall performance of the system but also improve its resistance to wear and tear.

Another key characteristic of the Sterling STT 800 is its integration with advanced navigation and control systems. The aircraft can utilize GPS, inertial navigation systems, and state-of-the-art avionics to maintain high levels of situational awareness and operational efficiency. This integration enables seamless communication between components, allowing for real-time adjustments and data sharing during flight.

The STT 800 is also designed with modularity in mind, allowing for easy upgrades and the incorporation of future technologies. This adaptability ensures that operators can keep pace with the rapidly evolving landscape of aerospace technology, maintaining a competitive edge in both military and civilian applications.

In addition, the Sterling STT 800 features advanced software algorithms that optimize flight paths and enhance overall efficiency. This intelligent system provides operators with predictive analytics, ensuring that the aircraft can adapt to changing conditions and mission objectives effectively.

Overall, the Sterling STT 800 represents a significant leap forward in thrust vector control technology. With its combination of advanced maneuverability, durable design, sophisticated navigation systems, and modularity, it exemplifies the capabilities required for modern aerial operations and sets a new standard for performance in the aerospace industry.