Baldor MN1928 Installing the NextMove ES card, Other requirements for installation

Page 14

www.supportme.net

3.1.2 Installing the NextMove ES card

CAUTION: Before touching the card, be sure to discharge static electricity from your body and clothing by touching a grounded metal surface. Alternatively, wear an earth strap while handling the card.

The NextMove ES is designed to be mounted in a IEC297 / DIN41494 rack with card frames and guides to support the card. An additional backplane card is recommended (see section 5).

1.Mount the backplane connector card (optional) at the rear of the rack system.

2.Slide the NextMove ES card into the guide rails, ensuring that it plugs securely into the backplane connector.

3.Confirm that any neighboring cards or equipment are not touching the NextMove ES card.

3.1.3Other requirements for installation

HThe NextMove ES requires +5V and ±12V power supplies. The total power requirement (excluding any option cards) is +5V at 1A, +12V at 50mA and -12V at 50mA. If digital outputs are to be used, a supply will be required to drive them - see section 4.4.2.

HA PC that fulfills the following specification:

 

Minimum specification

 

Recommended specification

 

 

 

 

Processor

Intel Pentium 133MHz

 

Intel PentiumII 400MHz or faster

 

 

 

 

RAM

32MB

 

128MB

 

 

 

 

Hard disk space

40MB

 

60MB

 

 

 

CD-ROM

A CD-ROM drive

 

 

 

Serial port

 

USB port

 

 

 

or

 

RS232 or RS485 serial port (depending on NextMove ES model)

 

 

 

 

Screen

800 x 600, 256 colors

 

1024 x 768, 16-bit color

 

 

 

Mouse

A mouse or similar pointing device

 

 

 

 

Operating

Windows 95, Windows NT

 

Windows 98*, Windows ME*,

system

 

 

Windows NT*, Windows 2000 or

 

 

 

Windows XP

 

 

 

 

*For USB support, Windows 2000 or Windows XP is required. Software installation will be described later, in section 6.

HA serial cable (connected as shown in section 4.5.4) or a USB cable.

HYour PC operating system user manual might be useful if you are not familiar with Windows.

3-2 Basic Installation

MN1928

Image 14
Contents NextMove ES Motion Controller Page Contents Backplanes Troubleshooting Appendices General Information Safety Notice PrecautionsNextMove ES features MN1928 IntroductionIntroduction MN1928 Identifying the catalog number InstalledReceiving and inspection DatePhase Units and abbreviationsLocation requirements You should read all the sections in Basic InstallationIntroduction Installing the NextMove ES card Other requirements for installation96-pin edge connector Row Pin 1 96-pin connector pin assignment96-pin connector pin assignment Analog I/O Analog inputsAIN0 analog input wiring Analog outputs Analog output Demand0 shownNextMove ES ‘X1’ FlexDrive II / drive amplifier General purpose inputs Digital I/ODigital inputs Auxiliary encoder inputs DIN17 STEP, DIN18 DIR, DIN19 Z Reset input !RSTINTypical digital input wiring USRV+ Digital outputs DOUT0 DOUT7DOUT8 DOUT11 Digital outputs DOUT8-11 DOUT8 shownGlobalerroroutput keyword Error output Error OutDriveenableoutput keyword Relay keywordOther I/O Stepper control outputsEncoder inputs USB port Serial port Using RS232Pin RS232 name RS485 / RS422 name 96-pin Connector RS232 serial port connections Multidrop using RS485 / RS422 Wire RS422 multi-drop connectionsConnecting serial Baldor HMI Operator Panels RS232 cable wiringCan connector CanMaximum Can wiringOpto-isolation power requirements Baud Rate Bus LengthCANopen Typical CANopen network connectionsBaldor can Baldor can operator panel connectionsInput / Output MN1928 Connection summary minimum system wiring Drive amplifier axisConnector details for minimum system wiring shown in Figure Backplanes BPL010-501 non-isolated backplane X10Pin Name Description 96-pin Connector Analog outputs demands DIN1 Mating connector Weidmüller Omnimate BL 3.5/5 DOUT11 Stepper axes outputs DIR3+ Stepper output typical connection to a Baldor MicroFlex Pin Name Description 96-pin Power inputsEncoder input Pin RS232 name RS485/RS422 name 96-pin BPL010-502/503 backplane with opto-isolator card Backplane BPL010-502/503 connector layout Pin Name Description NextMove ES 96-pin Connector Error relay connections Relay connectionsAnalog output, DEMAND0 shown Customer power supply ground DIN15 5.1 BPL010-502 Active high inputs Digital input circuit DIN16 with ‘active high’ inputsDIN16 5.2 BPL010-503 Active low inputs Digital input circuit DIN16 with ‘active low’ inputsUSRV+ USR V+ USR COM 6.1 BPL010-502 PNP outputs 6.2 BPL010-503 NPN outputsDigital output circuit DOUT8-11 DOUT8 shown Stepper axes outputs Pin Name Description 96-pin Connector Stepper output typical connection to a Baldor MicroFlex Power inputs Serial port Backplanes MN1928 Starting the NextMove ES Connecting the NextMove ES to the PCInstalling WorkBench \startPreliminary checks Power on checksInstalling the USB driver WorkBench Help fileStarting WorkBench MN1928 Operation Configuring an axis Selecting the axis typeSelecting a scale Setting the drive enable output Testing the drive enable output Stepper axis testing Testing the outputServo axis testing and tuning Testing the demand outputTORQUE.4=-5 An introduction to closed loop control Summary, the following rules can be used as a guide NextMove ES servo loop Servo axis tuning for current control Selecting servo loop gainsMN1928 Operation Underdamped response Underdamped responseOverdamped response Overdamped responseCritically damped response Critically damped ideal responseServo axis eliminating steady-state errors Servo axis tuning for velocity control Calculating KvelffKvelff Correct value of Kvelff Adjusting Kprop Correct value of Kprop Digital input/output configuration Digital input configurationDigital output configuration Saving setup information Loading saved information Problem diagnosis SupportMe featureNextMove ES indicators Status displaySurface mount LEDs D3, D4, D16 and D20 D3 yellowMotor control Symptom CheckCommunication Motor runs WorkBench Nodescan keyword Baldor can Input power Unit Value Type Digital inputs non-isolatedDigital inputs opto-isolated Input voltageDigital outputs general purpose opto-isolated Digital output error output non-isolatedDigital outputs general purpose non-isolated Error relay opto-isolated backplanes Serial RS232/RS485 portEnvironmental Weights and dimensionsCan interface Specifications MN1928 Drive amplifier to NextMove ES feedback cables Feedback cablesBaldor catalog number Length Appendix MN1928 Index Index MN1928 USB Index MN1928 Comments CommentComments MN1928 Page LT0202A02
Related manuals
Manual 110 pages 20.08 Kb

MN1928 specifications

The Baldor MN1928 is a highly regarded motor designed for a variety of industrial applications, known for its durability and efficiency. This motor is part of Baldor’s extensive range of products, which are engineered to meet the demands of heavy-duty operations.

One of the key features of the Baldor MN1928 is its robust construction. Built with high-quality materials, this motor is designed to withstand harsh environmental conditions often found in industrial settings. The steel frame is not only resilient, but it also enhances the motor's cooling capabilities, enabling it to perform effectively over extended periods.

The MN1928 is equipped with advanced technologies that optimize its performance. One notable technology is the use of high-efficiency induction motor design. This reduces energy consumption significantly and contributes to lower operational costs. The motor is also designed with a continuous duty rating, making it capable of running for long hours without compromising its functionality or lifespan.

In terms of characteristics, the Baldor MN1928 features a reliable ball bearing design, which minimizes friction and wear, ensuring smoother operation and increased reliability. With a horsepower rating that suits a range of applications, it provides the necessary torque and speed to power various machinery effectively. The multi-voltage design allows for versatile installation options, accommodating different electrical systems while ensuring efficient performance.

Another important characteristic of this motor is its ease of maintenance. The design allows for straightforward access to components, making it simple for technicians to perform routine checks and maintenance. This is particularly beneficial in industrial settings where downtime can be costly.

Safety is also a priority in the design of the Baldor MN1928. Equipped with thermal overload protection, it prevents overheating, reducing the risk of damage caused by excessive temperatures during operation. Additionally, the motor complies with various industry standards, ensuring safe operation within diverse environments.

In summary, the Baldor MN1928 stands out as a reliable choice for industrial applications, offering a combination of durability, efficiency, and advanced technology. Its robust construction, high-efficiency design, and safety features make it a preferred option for many enterprises seeking dependable motor solutions.