Baldor MN1928 installation manual Selecting a scale

Page 79

www.supportme.net

6.3.2 Selecting a scale

MintMT defines all positional and speed related motion keywords in terms of encoder quadrature counts (for servo motors) or steps for stepper motors. The number of quadrature counts (or steps) is divided by the SCALEFACTOR allowing you to use units more suitable for your application. The unit defined by setting a value for scale is called the user unit (uu).

Consider a servo motor with a 1000 line encoder. This provides 4000 quadrature counts for each revolution. If SCALEFACTOR is not set, a MintMT command that involves distance, speed, or acceleration may need to use a large number to specify a significant move. For example MOVER=16000 (Move Relative) would rotate the motor by 16000 quadrature counts - only four revolutions. By setting a SCALEFACTOR of 4000, the user unit becomes revolutions. The more understandable command MOVER=4 could now be used to move the motor four revolutions.

The same concept applies to stepper motors, where the scale can be set according to the number of steps per revolution. Typically, this would be 200 for a motor with a 1.8° step angle, or 400 if driven in half step mode. By setting a SCALEFACTOR of 200 (or 400 if driven in half step mode), the user unit becomes revolutions.

In applications involving linear motion a suitable value for SCALEFACTOR would allow commands to express values in linear distance, for example inches, feet or millimeters.

1.In the Toolbox, click the Parameters icon.

2.Click the Scale tab.

3.Click in the Axis drop down box to select the axis. Each axis can have a different scale if required.

4.Click in the Scale box and type a value.

5.Click Apply.

This immediately sets the scaling factor for the selected axis, which will remain in the NextMove ES until another scale is defined or power is removed from the NextMove ES. See section 6.10 for details about saving configuration parameters.

MN1928

Operation 6-7

Image 79
Contents NextMove ES Motion Controller Page Contents Backplanes Troubleshooting Appendices General Information Precautions Safety NoticeMN1928 Introduction NextMove ES featuresIntroduction MN1928 Date InstalledReceiving and inspection Identifying the catalog numberUnits and abbreviations PhaseIntroduction You should read all the sections in Basic InstallationLocation requirements Other requirements for installation Installing the NextMove ES card96-pin edge connector 96-pin connector pin assignment 1 96-pin connector pin assignmentRow Pin Analog inputs Analog I/OAIN0 analog input wiring Analog output Demand0 shown Analog outputsNextMove ES ‘X1’ FlexDrive II / drive amplifier Digital inputs Digital I/OGeneral purpose inputs Typical digital input wiring Reset input !RSTINAuxiliary encoder inputs DIN17 STEP, DIN18 DIR, DIN19 Z USRV+ DOUT0 DOUT7 Digital outputsDigital outputs DOUT8-11 DOUT8 shown DOUT8 DOUT11Relay keyword Error output Error OutDriveenableoutput keyword Globalerroroutput keywordStepper control outputs Other I/OEncoder inputs USB port Pin RS232 name RS485 / RS422 name 96-pin Connector Using RS232Serial port RS232 serial port connections Wire RS422 multi-drop connections Multidrop using RS485 / RS422RS232 cable wiring Connecting serial Baldor HMI Operator PanelsCan Can connectorBaud Rate Bus Length Can wiringOpto-isolation power requirements MaximumTypical CANopen network connections CANopenBaldor can operator panel connections Baldor canInput / Output MN1928 Drive amplifier axis Connection summary minimum system wiringConnector details for minimum system wiring shown in Figure Backplanes X10 BPL010-501 non-isolated backplanePin Name Description 96-pin Connector Analog outputs demands DIN1 Mating connector Weidmüller Omnimate BL 3.5/5 DOUT11 Stepper axes outputs DIR3+ Stepper output typical connection to a Baldor MicroFlex Encoder input Power inputsPin Name Description 96-pin Pin RS232 name RS485/RS422 name 96-pin BPL010-502/503 backplane with opto-isolator card Backplane BPL010-502/503 connector layout Pin Name Description NextMove ES 96-pin Connector Relay connections Error relay connectionsAnalog output, DEMAND0 shown Customer power supply ground DIN15 Digital input circuit DIN16 with ‘active high’ inputs 5.1 BPL010-502 Active high inputsDIN16 Digital input circuit DIN16 with ‘active low’ inputs 5.2 BPL010-503 Active low inputsUSRV+ USR V+ USR COM 6.2 BPL010-503 NPN outputs 6.1 BPL010-502 PNP outputsDigital output circuit DOUT8-11 DOUT8 shown Stepper axes outputs Pin Name Description 96-pin Connector Stepper output typical connection to a Baldor MicroFlex Power inputs Serial port Backplanes MN1928 \start Connecting the NextMove ES to the PCInstalling WorkBench Starting the NextMove ESInstalling the USB driver Power on checksPreliminary checks Help file WorkBenchStarting WorkBench MN1928 Operation Selecting the axis type Configuring an axisSelecting a scale Setting the drive enable output Testing the drive enable output Testing the output Stepper axis testingTesting the demand output Servo axis testing and tuningTORQUE.4=-5 An introduction to closed loop control Summary, the following rules can be used as a guide NextMove ES servo loop Selecting servo loop gains Servo axis tuning for current controlMN1928 Operation Underdamped response Underdamped responseOverdamped response Overdamped responseCritically damped ideal response Critically damped responseServo axis eliminating steady-state errors Calculating Kvelff Servo axis tuning for velocity controlKvelff Correct value of Kvelff Adjusting Kprop Correct value of Kprop Digital input configuration Digital input/output configurationDigital output configuration Saving setup information Loading saved information SupportMe feature Problem diagnosisStatus display NextMove ES indicatorsD3 yellow Surface mount LEDs D3, D4, D16 and D20Communication Symptom CheckMotor control Motor runs WorkBench Nodescan keyword Baldor can Input power Input voltage Digital inputs non-isolatedDigital inputs opto-isolated Unit Value TypeDigital outputs general purpose non-isolated Digital output error output non-isolatedDigital outputs general purpose opto-isolated Serial RS232/RS485 port Error relay opto-isolated backplanesCan interface Weights and dimensionsEnvironmental Specifications MN1928 Baldor catalog number Length Feedback cablesDrive amplifier to NextMove ES feedback cables Appendix MN1928 Index Index MN1928 USB Index MN1928 Comment CommentsComments MN1928 Page LT0202A02
Related manuals
Manual 110 pages 20.08 Kb

MN1928 specifications

The Baldor MN1928 is a highly regarded motor designed for a variety of industrial applications, known for its durability and efficiency. This motor is part of Baldor’s extensive range of products, which are engineered to meet the demands of heavy-duty operations.

One of the key features of the Baldor MN1928 is its robust construction. Built with high-quality materials, this motor is designed to withstand harsh environmental conditions often found in industrial settings. The steel frame is not only resilient, but it also enhances the motor's cooling capabilities, enabling it to perform effectively over extended periods.

The MN1928 is equipped with advanced technologies that optimize its performance. One notable technology is the use of high-efficiency induction motor design. This reduces energy consumption significantly and contributes to lower operational costs. The motor is also designed with a continuous duty rating, making it capable of running for long hours without compromising its functionality or lifespan.

In terms of characteristics, the Baldor MN1928 features a reliable ball bearing design, which minimizes friction and wear, ensuring smoother operation and increased reliability. With a horsepower rating that suits a range of applications, it provides the necessary torque and speed to power various machinery effectively. The multi-voltage design allows for versatile installation options, accommodating different electrical systems while ensuring efficient performance.

Another important characteristic of this motor is its ease of maintenance. The design allows for straightforward access to components, making it simple for technicians to perform routine checks and maintenance. This is particularly beneficial in industrial settings where downtime can be costly.

Safety is also a priority in the design of the Baldor MN1928. Equipped with thermal overload protection, it prevents overheating, reducing the risk of damage caused by excessive temperatures during operation. Additionally, the motor complies with various industry standards, ensuring safe operation within diverse environments.

In summary, the Baldor MN1928 stands out as a reliable choice for industrial applications, offering a combination of durability, efficiency, and advanced technology. Its robust construction, high-efficiency design, and safety features make it a preferred option for many enterprises seeking dependable motor solutions.