Miller Electric 145 DX manual Engine Hazards

Page 6

WELDING can cause fire or explosion.

Welding on closed containers, such as tanks, drums, or pipes, can cause them to blow up. Sparks can fly off from the welding arc. The flying sparks, hot workpiece, and hot

equipment can cause fires and burns. Accidental contact of electrode to metal objects can cause sparks, explosion, overheating, or fire. Check and be sure the area is safe before doing any welding.

HOT PARTS can cause severe burns.

DDo not touch hot parts bare handed.

DAllow cooling period before working on equipment.

DTo handle hot parts, use proper tools and/or wear heavy, insulated welding gloves and clothing to pre- vent burns.

DRemove all flammables within 35 ft (10.7 m) of the welding arc. If this is not possible, tightly cover them with approved covers.

DDo not weld where flying sparks can strike flammable material.

DProtect yourself and others from flying sparks and hot metal.

DBe alert that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas.

DWatch for fire, and keep a fire extinguisher nearby.

DBe aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side.

DDo not weld on closed containers such as tanks, drums, or pipes, unless they are properly prepared according to AWS F4.1 (see Safety Standards).

DConnect work cable to the work as close to the welding area as practical to prevent welding current from traveling long, possibly unknown paths and causing electric shock, sparks, and fire hazards.

DDo not use welder to thaw frozen pipes.

DRemove stick electrode from holder or cut off welding wire at contact tip when not in use.

DWear oil-free protective garments such as leather gloves, heavy shirt, cuf- fless trousers, high shoes, and a cap.

DRemove any combustibles, such as a butane lighter or matches, from your person before doing any welding.

DFollow requirements in OSHA 1910.252 (a) (2) (iv) and NFPA 51B for hot work and have a fire watcher and extinguisher nearby.

FLYING METAL can injure eyes.

DWelding, chipping, wire brushing, and grinding cause sparks and flying metal. As welds cool, they can throw off slag.

DWear approved safety glasses with side shields even under your welding helmet.

NOISE can damage hearing.

Noise from some processes or equipment can damage hearing.

DWear approved ear protection if noise level is high.

MAGNETIC FIELDS can affect pacemakers.

D Pacemaker wearers keep away.

D Wearers should consult their doctor before going near arc welding, gouging, or spot welding opera- tions.

CYLINDERS can explode if damaged.

Shielding gas cylinders contain gas under high pressure. If damaged, a cylinder can explode. Since gas cylinders are normally part of the welding process, be sure to treat them carefully.

DProtect compressed gas cylinders from excessive heat, mechanical shocks, physical damage, slag, open flames, sparks, and arcs.

DInstall cylinders in an upright position by securing to a stationary support or cylinder rack to prevent falling or tipping.

DKeep cylinders away from any welding or other electrical circuits.

DNever drape a welding torch over a gas cylinder.

DNever allow a welding electrode to touch any cylinder.

DNever weld on a pressurized cylinder — explosion will result.

DUse only correct shielding gas cylinders, regulators, hoses, and fittings de- signed for the specific application; maintain them and associated parts in good condition.

DTurn face away from valve outlet when opening cylinder valve.

DKeep protective cap in place over valve except when cylinder is in use or connected for use.

DUse the right equipment, correct procedures, and sufficient number of per- sons to llift and move cylinders.

DRead and follow instructions on compressed gas cylinders, associated equipment, and Compressed Gas Association (CGA) publication P-1 listed in Safety Standards.

1-3. Engine Hazards

BATTERY EXPLOSION can BLIND.

DAlways wear a face shield, rubber gloves, and protec-

tive clothing when working on a battery.

D Stop engine before disconnecting or connecting bat- tery cables or servicing battery.

DDo not allow tools to cause sparks when working on a battery.

DDo not use welder to charge batteries or jump start vehicles.

DObserve correct polarity (+ and −) on batteries.

DDisconnect negative (−) cable first and connect it last.

FUEL can cause fire or explosion.

D Stop engine and let it cool off before checking or add- ing fuel.

DDo not add fuel while smoking or if unit is near any sparks or open flames.

DDo not overfill tank — allow room for fuel to expand.

DDo not spill fuel. If fuel is spilled, clean up before starting engine.

DDispose of rags in a fireproof container.

DAlways keep nozzle in contact with tank when fueling.

MOVING PARTS can cause injury.

D Keep away from fans, belts, and rotors.

D Keep all doors, panels, covers, and guards closed and securely in place.

DStop engine before installing or connecting unit.

DHave only qualified people remove doors, panels, covers, or guards for maintenance and troubleshooting as necessary.

DTo prevent accidental starting during servicing, disconnect negative (−) battery cable from battery.

DKeep hands, hair, loose clothing, and tools away from moving parts.

DReinstall doors, panels, covers, or guards when servicing is finished and before starting engine.

DBefore working on generator, remove spark plugs or injectors to keep engine from kicking back or starting.

DBlock flywheel so that it will not turn while working on generator compo- nents.

HOT PARTS can cause severe burns.

DDo not touch hot engine parts.

DAllow cooling period before maintaining.

DWear protective gloves and clothing when working on a hot engine.

OM-4417 Page 2

Image 6
Contents Description OM-4417210 403CProcesses File Engine DriveFrom Miller to You Table of Contents Page Symbol Usage Arc Welding HazardsEngine Hazards Compressed Air Hazards EMF Information Principal Safety StandardsCalifornia Proposition 65 Warnings Radiation can cause interferenceUN Choc Électrique peut tuer Signification des symboles− Consignes DE Sécurité − Lire Avant Utilisation LES Fumées ET LES GAZ peuvent être dangereuxDES Pièces Chaudes peuvent provoquer des brûlures graves LE Soudage peut provoquer un in- cendie ou une explosionDES Particules Volantes peuvent blesser les yeux LE Bruit peut affecter l’ouïeLE Surchauffement peut endom- mager le moteur électrique ’AIR Comprimé peut provoquer des blessures’EMPLOI Excessif peut LES Étincelles Volantes risquent de provoquer des blessuresPour les moteurs diesel LE Soudage À L’ARC risque de provoquer des interférencesPour les moteurs à essence Boulevard, Rexdale, Ontario, Canada M9W 1R3 téléphoneWeld, Power, And Engine Specifications − SpecificationsSymbol Definitions − DefinitionsDimensions, Weights, And Operating Angles DimensionsVolt-Ampere Curves Fuel Consumption Generator Power Curve Duty Cycle100% Duty Cycle at 80 Amperes CC/DC − Installation Installing Welding GeneratorGrounding Generator To Truck Or Trailer Frame 13 mm Full Gasoline Grounding Generator When Supplying Building SystemsEngine Prestart Checks − Standard Model Fuel Valve Open valve+ − Connecting The Battery DX Models OnlyEngine Prestart Checks − DX Model Tools Needed 1/2150 ft 200 ft 250 ft Connecting To Weld Output TerminalsSelecting Weld Cable Sizes 350 ft 400 ft 45 m 60 m 70 m 90 m 105 m 120 mMaterial Thickness Reference Chart − Operating the Welding Generator Controls Standard Models See SectionDescription Of Controls Standard Models See Section Stop engine and add oil if light goes on see SectionTo Start Controls DX Models See Section Description Of Controls DX Models See Section Generator Power Panel Receptacles − Operating Auxiliary EquipmentAC Receptacle RC1 − Maintenance Routine MaintenanceServicing Air Cleaner Stop engineStandard Model Shown Adjusting Engine Speed Standard Models Only Stop engine. Close fuel valveTools Needed Adjusting Engine Speed DX Models Only Weld/Power Speed AdjustmentIdle Speed Adjustment Generator Power − TroubleshootingTroubleshooting WeldingEngine − Electrical Diagrams Circuit Diagram For Standard ModelsCircuit Diagram for DX Models − Generator Power Guidelines Selecting EquipmentEarth ground if supplying Grounding When Supplying Building SystemsHow Much Power Does Equipment Require? Amperes x Volts = WattsIndustrial Motors Rating Starting Watts Running Watts Approximate Power Requirements For Industrial MotorsApproximate Power Requirements For Farm/Home Equipment Farm/Home Equipment Rating Starting Watts Running WattsApproximate Power Requirements For Contractor Equipment Contractor Rating Starting Watts Running WattsSingle-Phase Induction Motor Starting Requirements Power Required To Start MotorHow Much Power Can Generator Supply? KVA/HP x HP x 1000 = Starting AmperageTypical Connections To Supply Standby Power Selecting Extension Cord Use Shortest Cord Possible Current Load Watts AmperesStick Welding Procedure Weld current starts when electrode touches work- piece− Stick Welding Smaw Guidelines Electrode and Amperage Selection Chart Striking an Arc − Scratch Start TechniqueStriking an Arc − Tapping Technique Positioning Electrode Holder Poor Weld Bead CharacteristicsGood Weld Bead Characteristics 10-30 9090 End View of Work AngleConditions That Affect Weld Bead Shape Electrode Movement During WeldingTee Joint Butt JointsLap Joint 16 in 30 1.6 mm Tack WeldsWeld Test Troubleshooting − PorosityTroubleshooting − Excessive Spatter Possible Causes Corrective ActionsTroubleshooting − Incomplete Fusion Troubleshooting − Lack Of PenetrationTroubleshooting − Excessive Penetration Troubleshooting − Burn-Through Troubleshooting − Waviness Of BeadTroubleshooting − Distortion − Parts List Main Assembly Standard ModelDia Part Description Quantity Mkgs Main Assembly DX Model 4546 51 41Main Assembly OM-4417 Service Your distributor also givesSupport For assistance in filing or settling claims, contact To locate a Distributor or Service Agency visitMiller Electric Mfg. Co Your distributor and/or equipment manufacturer’s
Related manuals
Manual 4 pages 16.38 Kb

145 DX specifications

Miller Electric has established itself as a leading name in the welding industry, and the Miller Electric 145 DX and 145 are notable additions to its lineup of innovative welding machines. Designed to offer versatility and efficiency, these units cater to both novice welders and seasoned professionals seeking reliable equipment for various welding applications.

One of the key features of the Miller Electric 145 DX and 145 is their advanced welding technology. Both models utilize inverter technology, which allows for a compact design while delivering exceptional power. This inverter design not only increases efficiency but also reduces energy consumption, making it an environmentally friendly choice. The lightweight nature of these units makes them highly portable, allowing users to easily transport them to job sites or move them around the workshop.

The Miller Electric 145 DX model incorporates a digital interface that simplifies set-up and operation. This user-friendly digital display shows critical parameters such as voltage and amperage, helping the operator make quick adjustments on-the-fly for optimal results. The advanced Auto-Set feature adjusts the machine settings automatically based on the material thickness and type, significantly reducing the learning curve for inexperienced welders.

Both the 145 DX and 145 models can handle a variety of welding processes, including MIG and TIG welding. This versatility makes them suitable for a wide range of applications, from automotive repair and fabrication to metal sculpture and DIY projects. The machines are capable of welding aluminum, stainless steel, and mild steel with ease, providing excellent penetration and bead appearance.

Another noteworthy characteristic of the Miller Electric 145 series is their reliability and durability. Designed with robust components that can withstand challenging working environments, these machines are built to last. The thermal overload protection feature ensures the units do not overheat, safeguarding the internal components and ensuring a longer operational life.

In summary, the Miller Electric 145 DX and 145 stand out in the welding equipment market due to their advanced inverter technology, user-friendly digital interfaces, versatile capabilities, and durability. They are ideal choices for anyone looking to elevate their welding experience, delivering consistent and reliable performance across a variety of projects.