act as a shutter. The card prevents light from entering the telescope while the shutter is released. Once the shutter has been released and the vibration has diminished (a few seconds), move the black card out of the way to expose the film. After the exposure is complete, place the card over the front of the telescope and close the shutter. Advance the film and you're ready for your next shot. Keep in mind that the card should be held a few inches in front of the telescope, and not touching it. It is easier if you use two people for this process; one to release the camera shutter and one to hold the card. Here's the process for making the exposure.

1.Find and center the desired target in the viewfinder of your camera.

2.Turn the focus knob until the image is as sharp as possible.

3.Place the black card over the front of the telescope.

4.Release the shutter using a cable release.

5.Wait for the vibration caused by releasing the shutter to diminish. Also, wait for a moment of good seeing.

6.Remove the black card from in front of the telescope for the duration of the exposure (see accompanying table).

7.Replace the black card over the front of the telescope.

8.Close the camera's shutter.

Advance the film and you are ready for your next exposure. Don't forget to take photos of varying duration and keep accurate records of what you have done. Record the date, telescope, exposure duration, eyepiece, f/ratio, film, and some comments on the seeing conditions.

The following table lists exposures for eyepiece projection with a 10mm eyepiece. All exposure times are listed in seconds or fractions of a second.

Planet

ISO 50

ISO 100

ISO 200

ISO 400

Moon

4

2

1

1/2

Mercury

16

8

4

2

Venus

1/2

1/4

1/8

1/15

Mars

16

8

4

2

Jupiter

8

4

2

1

Saturn

16

8

4

2

Table 7-2

Recommended exposure time for photographing planets.

The exposure times listed here should be used as a starting point. Always make exposures that are longer and shorter than the recommended time. Also, take a few photos at each shutter speed. This will ensure that you get a good photo. It is not uncommon to go through an entire roll of 36 exposures and have only one good shot.

NOTE: Don't expect to record more detail than you can see visually in the eyepiece at the time you are photographing.

Once you have mastered the technique, experiment with different films, different focal length eyepieces, and even different filters.

Long Exposure Prime Focus Photography

This is the last form of celestial photography to be attempted after others have been mastered. It is intended primarily for deep sky objects, that is objects outside our solar system which includes star clusters, nebulae, and galaxies. While it may seem that high magnification is required for these objects, just the opposite is true. Most of these objects cover large angular areas and fit nicely into the prime focus field of your telescope. The brightness of these objects, however, requires long exposure times and, as a result, are rather difficult.

40

Page 40
Image 40
Celestron C5-S, C8-S, C9.25-S Long Exposure Prime Focus Photography, Planet ISO Moon Mercury Venus Mars Jupiter Saturn

C9.25-S, C5-S, C8-S specifications

Celestron, a leader in the field of amateur and professional astronomy, offers a range of telescopes ideal for both novices and experienced stargazers. Among their most celebrated models are the C8-S, C5-S, and C9.25-S, each designed with unique features and technologies that enhance the observational experience.

The Celestron C8-S is an iconic telescope known for its 8-inch aperture. This Schmidt-Cassegrain design combines a compact form factor with a powerful light-gathering capability, making it perfect for deep-sky observing. Its optical tube has a focal length of 2032mm, providing an excellent balance of wide field viewing and high magnification. The C8-S features Celestron's StarBright XLT optical coating, enhancing light transmission and contrast, ensuring that even faint objects are visible. With compatibility for various accessories and a sturdy mount, the C8-S stands as a versatile option for different observing styles.

Moving to the C5-S, this model boasts a 5-inch aperture while maintains a compact and portable design. It is particularly popular among travelers and casual astronomers who value convenience without compromising on quality. The C5-S also employs the Schmidt-Cassegrain design, providing sharp images and improved color correction. With its shorter focal length of 1250mm, the C5-S excels in both planetary and deep-sky observation. The telescope's lightweight build makes it easy to transport, while the integrated optical systems ensure a clear view of celestial objects.

The C9.25-S represents a step up in performance, featuring a 9.25-inch aperture that captures more light than its smaller counterparts. This telescope offers a versatile focal length of 2350mm, allowing for impressive high-power planetary views, as well as detailed observations of deep-sky objects. The C9.25-S utilizes a unique StarBright XLT coating and features advanced optics that minimize optical distortion, resulting in sharp, high-contrast images. It is equipped with a sturdy mount that ensures stability during extended observation sessions.

All three models are compatible with Celestron's advanced computer-driven mount systems, allowing for effortless tracking and alignment. With built-in features such as GoTo technology, users can easily locate thousands of celestial objects with the touch of a button. This combination of advanced optics, portability, and user-friendly technology makes the Celestron C8-S, C5-S, and C9.25-S excellent choices for anyone looking to explore the cosmos more deeply. Whether for casual stargazing or serious astronomical study, these telescopes deliver exceptional performance to meet a variety of needs.