5.5 Ultra DMA Feature Set

5.5.4.4Terminating an Ultra DMA data out burst

a)Host terminating an Ultra DMA data out burst

The following stops shall occur in the order they are listed unless otherwise specifically allowed (see 5.6.3.10 and 5.6.3.2 for specific timing requirements):

1)The host shall initiate termination of an Ultra DMA burst by not generating HSTROBE edges.

2)The host shall assert STOP no sooner than tSS after it last generated an HSTROBE edge. The host shall not negate STOP again until after the Ultra DMA burst is terminated.

3)The device shall negate DMARQ within tLI after the host asserts STOP. The device shall not assert DMARQ again until after the Ultra DMA burst is terminated.

4)The device shall negate DDMARDY- with tLI after the host has negated STOP. The device shall not assert DDMARDY- again until after the Ultra DMA burst termination is complete.

5)If HSTROBE is negated, the host shall assert HSTROBE with tLI after the device has negated DMARQ. No data shall be transferred during this assertion. The device shall ignore this transition on HSTROBE. HSTROBE shall remain asserted until the Ultra DMA burst is terminated.

6)The host shall place the result of its CRC calculation on DD (15:0) (see 5.5.5)

7)The host shall negate DMACK- no sooner than tMLI after the host has asserted HSTROBE and STOP and the device has negated DMARQ and

DDMARDY-, and no sooner than tDVS after placing the result of its CRC calculation on DD (15:0).

8)The device shall latch the host's CRC data from DD (15:0) on the negating edge of DMACK-.

9)The device shall compare the CRC data received from the host with the results of its own CRC calculation. If a miscompare error occurs during one or more Ultra DMA bursts for any one command, at the end of the command, the device shall report the first error that occurred (see 5.5.5).

10)The device shall release DDMARDY- within tIORDYZ after the host has negated DMACK-.

11)The host shall neither negate STOP nor negate HSTROBE until at least tACK after negating DMACK-.

12)The host shall not assert DIOW-, CS0-, CS1-, DA2, DA1, or DA0 until at least tACK after negating DMACK.

C141-E217

5-145

Page 221
Image 221
Fujitsu MHV2060AH, MHV2100AH, MHV2080AH, MHV2040AH manual Terminating an Ultra DMA data out burst

MHV2040AH, MHV2080AH, MHV2060AH, MHV2100AH specifications

The Fujitsu MHV series of hard disk drives, specifically the MHV2060AH, MHV2080AH, MHV2100AH, and MHV2040AH, are renowned for their reliability and performance in the mobile HDD segment. Designed primarily for use in laptops and other portable devices, these drives integrate cutting-edge technologies to meet the demands of today's data-intensive applications.

One of the hallmark features of the MHV series is its high data density, allowing for substantial storage capabilities in compact sizes. The MHV2060AH offers a storage capacity of 60 GB, while the MHV2080AH and MHV2100AH offer 80 GB and 100 GB respectively. The MHV2040AH provides a slightly more modest but still robust 40 GB of storage. This range of capacities ensures that users can select the model that best fits their storage needs.

The drives utilize the latest perpendicular magnetic recording (PMR) technology, which enhances recording efficiency and increases data storage densities. This technology significantly optimizes the use of disk surface area, providing better performance and more reliable data access. Additionally, the MHV series incorporates an advanced actuator system that ensures precision head positioning, enhancing data integrity and reducing error rates during read and write operations.

In terms of performance, the MHV series maintains a revolutions per minute (RPM) rating of 5400, which strikes a balance between speed and energy efficiency, making these drives suitable for low-power applications. The drives are also designed with a low acoustic level, generating minimal noise during operation—a crucial factor for mobile users who prefer quieter devices.

Furthermore, the Fujitsu MHV series features a robust shock resistance design, allowing them to withstand the rigors of mobile computing. This makes them suitable for use in portable environments subject to vibration and physical movement, thus ensuring data security and drive longevity.

Overall, the Fujitsu MHV2060AH, MHV2080AH, MHV2100AH, and MHV2040AH represent a formidable selection of mobile hard disk drives filled with advanced technologies and features, making them well-suited for a wide range of applications in today's fast-paced digital world. With their combination of storage capacity, performance, and durability, these drives continue to serve as reliable solutions for users seeking efficient data storage in portable formats.