
hp40g+.book Page 22 Friday, December 9, 2005 1:03 AM
Exercise 8 | For this exercise, make sure that the calculator is in exact | ||||||||||
| real mode with X as the current variable. | ||||||||||
Part 1 | For an integer, n, define the following: | ||||||||||
|
|
|
|
|
|
|
|
| x |
|
|
|
|
|
| 2 | 2x + 3 |
|
|
| |||
| un | = ∫ |
| n | dx | ||||||
|
|
| |||||||||
|
|
|
| 0 | x + 2 |
|
|
|
| ||
| Define g over [0,2] where: | ||||||||||
| g(x) = |
| 2x + 3 |
|
|
|
| ||||
|
|
|
|
|
| ||||||
|
|
|
|
| x + 2 |
|
|
|
|
| |
| 1. Find the variations of g over [0,2]. Show that for | ||||||||||
| every real x in [0,2]: | ||||||||||
| 3 |
|
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
| 2 |
|
|
| 4 |
|
|
|
|
|
|
| 2. Show that for every real x in [0,2]: | ||||||||||
|
| x |
|
|
| x |
|
|
|
| x |
| 3 |
|
|
|
| 7 |
| ||||
| n | ≤ g(x)e | n |
|
| n | |||||
|
|
| ≤ |
| |||||||
| 2 |
|
|
|
|
|
| 4 |
|
|
3. After integration, show that:
|
|
| 2 |
|
|
|
|
| 2 |
|
3 | ⎛ |
| ⎞ |
|
| 7 | ⎛ | ⎞ | ||
| n | ≤ u |
| n | ||||||
⎜ne |
| – n⎟ | n | ≤ | ⎜ne |
| – n⎟ | |||
2 | ⎝ |
|
| ⎠ |
| 4 | ⎝ |
| ⎠ | |
4. Using: |
|
|
|
|
|
|
| |||
lim | ex | – 1 | = 1 |
|
|
|
| |||
|
|
|
| |||||||
x → 0 |
|
| x |
|
|
|
|
|
|
show that if un has a limit L as n approaches infinity, then:
≤ ≤ 7 3 L
|
| ||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|