hp40g+.book Page 22 Friday, December 9, 2005 1:03 AM

Exercise 8

For this exercise, make sure that the calculator is in exact

 

real mode with X as the current variable.

Part 1

For an integer, n, define the following:

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

2

2x + 3

 

--

 

 

 

un

=

 

n

dx

 

 

--------------e

 

 

 

 

 

0

x + 2

 

 

 

 

 

Define g over [0,2] where:

 

g(x) =

 

2x + 3

 

 

 

 

 

 

--------------

 

 

 

 

 

 

 

 

 

x + 2

 

 

 

 

 

 

1. Find the variations of g over [0,2]. Show that for

 

every real x in [0,2]:

 

3

 

 

 

7

 

 

 

 

 

 

 

--g(x) ≤ --

 

 

 

 

 

 

 

2

 

 

 

4

 

 

 

 

 

 

 

2. Show that for every real x in [0,2]:

 

 

x

 

 

 

x

 

 

 

 

x

 

3

--

 

 

 

--

 

7

 

--

 

n

g(x)e

n

 

 

n

 

--e

 

 

--e

 

 

2

 

 

 

 

 

 

4

 

 

3. After integration, show that:

 

 

 

2

 

 

 

 

 

2

 

3

 

--

 

 

7

--

 

n

u

 

n

--

ne

 

n

n

--

ne

 

n

2

 

 

 

4

 

4. Using:

 

 

 

 

 

 

 

lim

ex

– 1

= 1

 

 

 

 

-------------

 

 

 

 

x → 0

 

 

x

 

 

 

 

 

 

show that if un has a limit L as n approaches infinity, then:

≤ ≤ 7 3 L -- 2

16-22

 

 

Step-by-Step Examples