Page 14-6
A complex Fourier
Fourier series

and you will notice that the CAS default variable X in the equation writer screen replaces the variable s in this definition. Therefore, when using the function LAP you get back a function of X, which is the Laplace transform of f(X).

Example 2 – Determine the inverse Laplace transform of F(s) = sin(s). Use:

‘1/(X+1)^2’ ILAP

Function FOURIER`

The calculator returns the result: ‘X/EXP(X)’, meaning that L -1{1/(s+1)2} = xe-x.

series is defined by the following expression

 

 

 

 

 

 

+∞

 

 

2inπ t

 

 

 

 

 

 

f (t) =

cn

exp(

),

 

 

 

 

 

 

 

 

 

 

 

 

n = −∞

 

 

T

where

 

 

 

 

 

 

 

 

 

c

 

=

1

T

f (t) exp(

2 i n ⋅π

t ) dt, n = −∞ ,...,2,1,0,1,2,....

n

 

 

 

T

0

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function FOURIER provides the coefficient cn of the complex-form of the Fourier series given the function f(t) and the value of n. The function FOURIER requires you to store the value of the period (T) of a T-periodic function into the CAS variable PERIOD before calling the function. The function FOURIER is

available in the DERIV sub-menu within the CALC menu (

 

).

Fourier series for a quadratic function

„Ö

 

 

Determine the coefficients c , c , and c

 

for the function g(t)

= (t-1)2+(t-1), with

period T = 2.

0 1

2

 

 

 

Page 151
Image 151
HP 49g manual Function FOURIER`, Fourier series for a quadratic function, Where