ii

SAFETY

 

ii

ELECTRIC SHOCK can kill.

3.a. The electrode and work (or ground) circuits are electrically “hot” when the welder is on. Do not touch these “hot” parts with your bare skin or wet clothing. Wear dry, hole-free

gloves to insulate hands.

3.b. Insulate yourself from work and ground using dry insulation. Make certain the insulation is large enough to cover your full area of physical contact with work and ground.

In addition to the normal safety precautions, if welding must be performed under electrically hazardous conditions (in damp locations or while wearing wet clothing; on metal structures such as floors, gratings or scaffolds; when in cramped positions such as sitting, kneeling or lying, if there is a high risk of unavoidable or accidental contact with the workpiece or ground) use the following equipment:

Semiautomatic DC Constant Voltage (Wire) Welder.

DC Manual (Stick) Welder.

AC Welder with Reduced Voltage Control.

3.c. In semiautomatic or automatic wire welding, the electrode, electrode reel, welding head, nozzle or semiautomatic welding gun are also electrically “hot”.

3.d. Always be sure the work cable makes a good electrical connection with the metal being welded. The connection should be as close as possible to the area being welded.

3.e. Ground the work or metal to be welded to a good electrical (earth) ground.

3.f. Maintain the electrode holder, work clamp, welding cable and welding machine in good, safe operating condition. Replace damaged insulation.

3.g. Never dip the electrode in water for cooling.

3.h. Never simultaneously touch electrically “hot” parts of electrode holders connected to two welders because voltage between the two can be the total of the open circuit voltage of both welders.

3.i. When working above floor level, use a safety belt to protect yourself from a fall should you get a shock.

3.j. Also see Items 6.c. and 8.

ARC RAYS can burn.

4.a. Use a shield with the proper filter and cover plates to protect your eyes from sparks and the rays of the arc when welding or observing open arc welding. Headshield and filter lens should conform to ANSI Z87. I standards.

4.b. Use suitable clothing made from durable flame-resistant material to protect your skin and that of your helpers from the arc rays.

4.c. Protect other nearby personnel with suitable, non-flammable screening and/or warn them not to watch the arc nor expose themselves to the arc rays or to hot spatter or metal.

FUMES AND GASES can be dangerous.

5.a. Welding may produce fumes and gases hazardous to health. Avoid breathing these fumes and gases. When welding, keep your head out of the fume. Use enough ventilation and/or exhaust at the arc to keep

fumes and gases away from the breathing zone. When

welding with electrodes which require special ventilation such as stainless or hard facing (see instructions on container or MSDS) or on lead or cadmium plated steel and other metals or coatings which produce highly toxic fumes, keep exposure as low as possible and within applicable OSHA PEL and ACGIH TLV limits using local exhaust or mechanical ventilation. In confined spaces or in some circum- stances, outdoors, a respirator may be required. Additional precautions are also required when welding on galvanized steel.

5.b. The operation of welding fume control equipment is affected by various factors including proper use and positioning of the equipment, maintenance of the equipment and the spe- cific welding procedure and application involved. Worker exposure level should be checked upon installation and periodically thereafter to be certain it is within applicable OSHA PEL and ACGIH TLV limits.

5.c. Do not weld in locations near chlorinated hydrocarbon vapors coming from degreasing, cleaning or spraying operations. The heat and rays of the arc can react with solvent vapors to form phosgene, a highly toxic gas, and other irritating prod- ucts.

5.d. Shielding gases used for arc welding can displace air and cause injury or death. Always use enough ventilation, especially in confined areas, to insure breathing air is safe.

5.e. Read and understand the manufacturer’s instructions for this equipment and the consumables to be used, including the material safety data sheet (MSDS) and follow your employer’s safety practices. MSDS forms are available from your welding distributor or from the manufacturer.

5.f. Also see item 1.b.

Page 3
Image 3
Lincoln Electric IM916 manual Electric Shock can kill

IM916 specifications

Lincoln Electric IM916 is a state-of-the-art multi-process welding machine designed to meet the needs of professionals in various industries. This versatile welder combines productivity, performance, and durability, making it an ideal choice for both expert welders and apprentices alike.

One of the standout features of the Lincoln Electric IM916 is its multi-process capability. It supports MIG, TIG, and Stick welding, allowing users to switch between processes with ease. This adaptability ensures that users can tackle a diverse range of welding applications, from fabrication and repair work to manufacturing and construction projects.

The IM916 boasts advanced inverter technology, resulting in a compact design that does not compromise on power. Inverter technology allows for efficient energy consumption, providing a more stable arc with improved control and consistency. This feature not only enhances the quality of the welds but also prolongs the life of the machine and reduces operating costs.

Additionally, the machine is equipped with a digital display that offers real-time feedback on weld parameters, making it easier for users to adjust settings on the fly. This helps in achieving precise results and enhancing overall welding performance. The intuitive interface is user-friendly, making it suitable for beginners while still providing the advanced functionalities experienced welders require.

The Lincoln Electric IM916 also features a robust construction designed for longevity in harsh working environments. It is built to withstand the rigors of heavy use, with durable components and protective features that enhance its resilience. This reliability ensures that the machine can perform consistently, even in demanding conditions.

Furthermore, the IM916 is designed with portability in mind. Its lightweight design and integrated handles make it easy to transport between job sites. This mobility is crucial for professionals who require equipment that can keep up with a fast-paced work environment.

In terms of safety, the Lincoln Electric IM916 incorporates several protective features, including thermal overload protection and safety alerts. These mechanisms provide peace of mind to users, allowing them to focus on their work without worrying about equipment failure.

In summary, the Lincoln Electric IM916 is a highly versatile, efficient, and durable welding machine that stands out in its category. With its multi-process capabilities, advanced inverter technology, user-friendly interface, and durable construction, it caters to a wide range of welding tasks, making it a valuable asset for any welding professional.