Manuals / Brands / Computer Equipment / Computer Hardware / Motorola / Computer Equipment / Computer Hardware

Motorola MPC8260 - page 1006

1 1006
Download 1006 pages, 9.94 Mb
Contents
Main Page Page Page About This Book Overview PowerPC Processor Core Memory Map System Interface Unit (SIU) Reset External Signals 60x Signals The 60x Bus Clocks and Power Control Memory Controller Page Secondary (L2) Cache Support IEEE 1149.1 Test Access Port Communications Processor Module Overview Serial Interface with Time-Slot Assigner CPM Multiplexing Baud-Rate Generators (BRGs) Timers SDMA Channels and IDMA Emulation Serial Communications Controllers (SCCs) SCC UART Mode SCC HDLC Mode SCC BISYNC Mode SCC Transparent Mode SCC Ethernet Mode SCC AppleTalk Mode Serial Management Controllers (SMCs) Page Multi-Channel Controllers (MCCs) Fast Communications Controllers (FCCs) ATM Controller Page Page Fast Ethernet Controller FCC HDLC Controller FCC Transparent Controller Serial Peripheral Interface (SPI) I2C Controller Parallel I/O Ports Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page About This Book Before Using this ManualImportant Note Audience Organization Page Page Page Page MOTOROLA About This Book lxi Table i. Acronyms and Abbreviated Terms lxii MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA About This Book lxiii lxiv MPC8260 PowerQUICC II Users Manual MOTOROLA PowerPC Architecture Terminology Conventions Table ii. Terminology Conventions MOTOROLA About This Book lxv Table iii describes instruction eld notation conventions used in this manual. Table iii. Instruction Field Conventions Page Part I Page MOTOROLA Part I. Overview Part I-lxix Table iv. Acronyms and Abbreviated Terms (Continued) Page Chapter 1 1.1 Features Page Page 1.2 MPC8260s Architecture Overview 1.2.1 MPC603e Core 1.2.2 System Interface Unit (SIU) 1.2.3 Communications Processor Module (CPM) 1.3 Software Compatibility Issues 1.3.1 Signals Figure 1-2. MPC8260 External Signals P O W E R Q U I II 1.4 Differences between MPC860 and MPC8260 1.5 Serial Protocol Table 1.6 MPC8260 Congurations 1.6.1 Pin Congurations 1.6.2 Serial Performance 1.7 MPC8260 Application Examples 1.7.1 Examples of Communication Systems 1.7.1.1 Remote Access Server 1.7.1.2 Regional Ofce Router 1.7.1.3 LAN-to-WAN Bridge Router 1-14 MPC8260 PowerQUICC II Users Manual MOTOROLA 1.7.1.4 Cellular Base Station Figure 1-6 shows a cellular base station conguration. Figure 1-6. Cellular Base Station Configuration 1.7.1.5 Telecommunications Switch Controller Figure 1-7 shows a telecommunications switch controller conguration. 1.7.1.6 SONET Transmission Controller 1.7.2 Bus Congurations 1.7.2.1 Basic System 1-16 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 1-9. Basic System Configuration 1.7.2.2 High-Performance Communication Figure 1-10 shows a high-performance communication conguration. Figure 1-10. High-Performance Communication 1.7.2.3 High-Performance System Microprocessor Page Chapter 2 PowerPC Processor Core 2.1 Overview 2-2 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 2-1. MPC8260 Integrated Processor Core Block Diagram Instruction Unit 2.2 PowerPC Processor Core Features Page 2.2.1 Instruction Unit 2.2.2 Instruction Queue and Dispatch Unit 2.2.3 Branch Processing Unit (BPU) 2.2.4 Independent Execution Units 2.2.4.1 Integer Unit (IU) 2.2.4.2 Load/Store Unit (LSU) 2.2.4.3 System Register Unit (SRU) 2.2.5 Completion Unit 2.2.6 Memory Subsystem Support 2.2.6.1 Memory Management Units (MMUs) 2.3 Programming Model 2.3.1 Register Set 2.3.1.1 PowerPC Register Set 2-10 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 2-2. MPC8260 Programming ModelRegisters Exception Handling Registers Memory Management Registers Configuration Registers USER MODEL UISA 2.3.1.2 MPC8260-Specic Registers 2-12 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 2-1 shows the bit denitions for HID0. Table 2-1. HID0 Field Descriptions MOTOROLA Chapter 2. PowerPC Processor Core 2-13 Table 2-1. HID0 Field Descriptions (Continued) 2-14 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 2-1. HID0 Field Descriptions (Continued) MOTOROLA Chapter 2. PowerPC Processor Core 2-15 Figure 2-4. Hardware Implementation Register 1 (HID1) Table 2-2 shows the bit denitions for HID1. Table 2-3 describes the HID2 elds. Figure 2-5. Hardware Implementation-Dependent Register 2 (HID2) Table 2-2. HID1 Field Descriptions Table 2-3. HID2 Field Descriptions 2.3.2 PowerPC Instruction Set and Addressing Modes 2.3.2.1 Calculating Effective Addresses 2.3.2.2 PowerPC Instruction Set Page 2.3.2.3 MPC8260 Implementation-Specic Instruction Set 2.4 Cache Implementation 2.4.1 PowerPC Cache Model 2.4.2 MPC8260 Implementation-Specic Cache Implementation 2.4.2.1 Data Cache Page 2.4.2.2 Instruction Cache 2.4.2.3 Cache Locking 2.5 Exception Model 2.5.1 PowerPC Exception Model 2.5.2 MPC8260 Implementation-Specic Exception Model 2-24 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 2-4. Exception Classifications for the Processor Core Table 2-5. Exceptions and Conditions MOTOROLA Chapter 2. PowerPC Processor Core 2-25 Table 2-5. Exceptions and Conditions (Continued) 2-26 MPC8260 PowerQUICC II Users Manual MOTOROLA 2.5.3 Exception Priorities 2.6 Memory Management Table 2-5. Exceptions and Conditions (Continued) 2.6.1 PowerPC MMU Model 2.6.2 MPC8260 Implementation-Specic MMU Features 2.7 Instruction Timing 2-30 MPC8260 PowerQUICC II Users Manual MOTOROLA The new latency is reected in Table 2-6. 2.8 Differences between the MPC8260s Core and the PowerPC 603e Microprocessor Table 2-6. Integer Divide Latency Table 2-7. Major Differences between MPC8260s Core and the MPC603e Users Manual MOTOROLA Chapter 2. PowerPC Processor Core 2-31 Page Chapter 3 Memory Map 3-2 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 3. Memory Map 3-3 3-4 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 3. Memory Map 3-5 3-6 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 3. Memory Map 3-7 3-8 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 3. Memory Map 3-9 3-10 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 3. Memory Map 3-11 3-12 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 3. Memory Map 3-13 3-14 MPC8260 PowerQUICC II Users Manual MOTOROLA Part II Conguration and Reset Audience Page Table v. Acronyms and Abbreviated Terms (Continued) Page Chapter 4 System Interface Unit (SIU) 4.1 System Conguration and Protection 4.1.1 Bus Monitor 4.1.2 Timers Clock 4.1.3 Time Counter (TMCNT) 4.1.4 Periodic Interrupt Timer (PIT) 4.1.5 Software Watchdog Timer 4.2 Interrupt Controller 4-8 MPC8260 PowerQUICC II Users Manual MOTOROLA 4.2.1 Interrupt Conguration Figure 4-8. MPC8260 Interrupt Structure 4.2.2 Interrupt Source Priorities 4-10 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 4-2. Interrupt Source Priority Levels (Continued) MOTOROLA Chapter 4. System Interface Unit (SIU) 4-11 4.2.2.1 SCC, FCC, and MCC Relative Priority 4.2.2.2 PIT, TMCNT, and IRQ Relative Priority 4.2.2.3 Highest Priority Interrupt 4.2.3 Masking Interrupt Sources 4-14 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 4-9. Interrupt Request Masking 4.2.4 Interrupt Vector Generation and Calculation Table 4-3. Encoding the Interrupt Vector MOTOROLA Chapter 4. System Interface Unit (SIU) 4-15 Table 4-3. Encoding the Interrupt Vector (Continued) 4.2.4.1 Port C External Interrupts 4.3 Programming Model 4.3.1 Interrupt Controller Registers 4.3.1.1 SIU Interrupt Conguration Register (SICR) 4-18 MPC8260 PowerQUICC II Users Manual MOTOROLA The SICR register bits are described in Table 4-4. 4.3.1.2 SIU Interrupt Priority Register (SIPRR) Figure 4-11. SIU Interrupt Priority Register (SIPRR) Table 4-4. SICR Field Descriptions MOTOROLA Chapter 4. System Interface Unit (SIU) 4-19 The SIPRR register bits are described in Table 4-5. 4.3.1.3 CPM Interrupt Priority Registers (SCPRR_H and SCPRR_L) Figure 4-12. CPM High Interrupt Priority Register (SCPRR_H) Table 4-5. SIPRR Field Descriptions 4-20 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 4-6 describes SCPRR_H elds. Table 4-7 describes SCPRR_L elds. Table 4-6. SCPRR_H Field Descriptions Figure 4-13. CPM Low Interrupt Priority Register (SCPRR_L) Table 4-7. SCPRR_L Field Descriptions MOTOROLA Chapter 4. System Interface Unit (SIU) 4-21 4.3.1.4 SIU Interrupt Pending Registers (SIPNR_H and SIPNR_L) Figure 4-15 shows SIPNR_L elds. Figure 4-14. SIPNR_H Fields Figure 4-15. SIPNR_L Fields Table 4-7. SCPRR_L Field Descriptions (Continued) 4.3.1.5 SIU Interrupt Mask Registers (SIMR_H and SIMR_L) 4.3.1.6 SIU Interrupt Vector Register (SIVEC) 4-24 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 4-19. Interrupt Table Handling Example 4.3.1.7 SIU External Interrupt Control Register (SIEXR) 4-25 Table 4-8 describes SIEXR elds. The system conguration and protection registers are described in the following sections. 4.3.2.1 Bus Conguration Register (BCR) 4.3.2 System Conguration and Protection Registers Figure 4-20. SIU External Interrupt Control Register (SIEXR) Table 4-8. SIEXR Field Descriptions 4-26 Table 4-9 describes BCR elds. Figure 4-21. Bus Configuration Register (BCR) Table 4-9. BCR Field Descriptions 4-27 Table 4-9. BCR Field Descriptions (Continued) 4.3.2.3 60x Bus Arbitration-Level Registers (PPC_ALRH/PPC_ALRL) 4-28 Figure 4-22. PPC_ACR Table 4-10. PPC_ACR Field Descriptions 4-29 4.3.2.4 Local Bus Arbiter Conguration Register (LCL_ACR) Figure 4-23. PPC_ALRH 4.3.2.5 Local Bus Arbitration Level Registers (LCL_ALRH and LCL_ACRL) LCL_ALRL, shown in Figure 4-27, denes arbitration priority of MPC8260 local bus masters 815. Table 4-11. LCL_ACR Field Descriptions 4.3.2.6 SIU Module Conguration Register (SIUMCR) Figure 4-28. SIU Model Configuration Register (SIUMCR) Figure 4-27. LCL_ALRL 4-32 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 4-12 describes SIUMCR elds. Table 4-12. SIUMCR Register Field Descriptions 4-33 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 4-12. SIUMCR Register Field Descriptions (Continued) 4-34 MPC8260 PowerQUICC II Users Manual MOTOROLA 4.3.2.7 Internal Memory Map Register (IMMR) Table 4-13 describes IMMR elds. Figure 4-29. Internal Memory Map Register (IMMR) Table 4-13. IMMR Field Descriptions 4-35 MPC8260 PowerQUICC II Users Manual MOTOROLA 4.3.2.8 System Protection Control Register (SYPCR) Table 4-14 describes SYPCR elds. Figure 4-30. System Protection Control Register (SYPCCR) Table 4-14. SYPCR Field Descriptions 4-36 MPC8260 PowerQUICC II Users Manual MOTOROLA 4.3.2.9 Software Service Register (SWSR) Table 4-15 describes TESCR1 elds. 4.3.2.10 60x Bus Transfer Error Status and Control Register 1 (TESCR1) The 60x bus transfer error status and control register 1 (TESCR1) is shown in Figure 4-31. 4-37 MPC8260 PowerQUICC II Users Manual MOTOROLA 4.3.2.11 60x Bus Transfer Error Status and Control Register 2 (TESCR2) The 60x bus transfer error status and control register 2 (TESCR2) is shown in Figure 4-32. Figure 4-32. 60x Bus Transfer Error Status and Control Register 2 (TESCR2) Table 4-15. TESCR1 Field Descriptions (Continued) 4-38 MPC8260 PowerQUICC II Users Manual MOTOROLA 4.3.2.12 Local Bus Transfer Error Status and Control Register 1 (L_TESCR1) Figure 4-33. Local Bus Transfer Error Status and Control Register 1 (L_TESCR1) The local bus transfer error status and control register 1 (L_TESCR1) is shown in Figure 4-33. Table 4-16. TESCR2 Field Descriptions 4-39 MPC8260 PowerQUICC II Users Manual MOTOROLA 4.3.2.13 Local Bus Transfer Error Status and Control Register 2 (L_TESCR2) Figure 4-34. Local Bus Transfer Error Status and Control Register 2 (L_TESCR2) The local bus transfer error status and control register 2 (L_TESCR2) is shown in Figure 4-34. Table 4-17. L_TESCR1 Field Descriptions 4-40 MPC8260 PowerQUICC II Users Manual MOTOROLA 4.3.2.14 Time Counter Status and Control Register (TMCNTSC) Table 4-19 describes TMCNTSC elds. Table 4-18. L_TESCR2 Field Descriptions 4-41 MPC8260 PowerQUICC II Users Manual MOTOROLA 4.3.2.15 Time Counter Register (TMCNT) Figure 4-36. Time Counter Register (TCMCNT) 4.3.2.16 Time Counter Alarm Register (TMCNTAL) Table 4-19. TMCNTSC Field Descriptions (Continued) 4-42 MPC8260 PowerQUICC II Users Manual MOTOROLA 4.3.3 Periodic Interrupt Registers Figure 4-38. Periodic Interrupt Status and Control Register (PISCR) The periodic interrupt registers are described in the following sections. 4.3.3.1 Periodic Interrupt Status and Control Register (PISCR) Figure 4-37. Time Counter Alarm Register (TMCNTAL) Table 4-20. TMCNTAL Field Descriptions 4.3.3.2 Periodic Interrupt Timer Count Register (PITC) Figure 4-39. Periodic interrupt Timer Count Register (PITC) Table 4-21. PISCR Field Descriptions 4.3.3.3 Periodic Interrupt Timer Register (PITR) 4.4 SIU Pin Multiplexing MOTOROLA Chapter 4. System Interface Unit (SIU) 4-45 Table 4-24. Table 4-24. SIU Pins Multiplexing Control Pin Name Pin Conguration Control Page Chapter 5 Reset 5.1 Reset Causes 5.1.1 Reset Actions 5.1.2 Power-On Reset Flow 5.1.3 HRESET Flow 5.1.4 SRESET Flow 5-4 MPC8260 PowerQUICC II Users Manual MOTOROLA 5.2 Reset Status Register (RSR) Table 5-3 describes RSR elds. Figure 5-1. Reset Status Register (RSR) Table 5-3. RSR Field Descriptions MOTOROLA Chapter 5. Reset 5-5 5.3 Reset Mode Register (RMR) Table 5-4 describes RMR elds. The reset mode register (RMR), shown in Figure 5-2, is memory-mapped into the SIU register map. Figure 5-2. Reset Mode Register (RMR) Table 5-4. RMR Field Descriptions Table 5-3. RSR Field Descriptions (Continued) 5.4 Reset Conguration Page 5-8 MPC8260 PowerQUICC II Users Manual MOTOROLA 5.4.1 Hard Reset Conguration Word The contents of the hard reset conguration word are shown in Figure 5-3. Table 5-7 describes hard reset conguration word elds. MOTOROLA Chapter 5. Reset 5-9 5.4.2 Hard Reset Conguration Examples This section presents some examples of hard reset congurations in different systems. 5.4.2.1 Single MPC8260 with Default Conguration Table 5-7. Hard Reset Configuration Word Field Descriptions (Continued) 5.4.2.2 Single MPC8260 Congured from Boot EPROM 5.4.2.3 Multiple MPC8260s Congured from Boot EPROM MOTOROLA Chapter 5. Reset 5-11 Figure 5-6. Configuring Multiple Chips 5.4.2.4 Multiple MPC8260s in a System with No EPROM Part III The Hardware Interface Page Page Part III-iv MPC8260 PowerQUICC II Users Manual MOTOROLA Table vi. Acronyms and Abbreviated Terms (Continued) Page Page Chapter 6 External Signals 6.1 Functional Pinout Figure 6-1. MPC8260 External Signals 6.2 Signal Descriptions M P 8 2 6 0 MOTOROLA Chapter 6. External Signals 6-3 Table 6-1. External Signals 6-4 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 6. External Signals 6-5 6-6 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 6. External Signals 6-7 6-8 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 6. External Signals 6-9 6-10 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 6. External Signals 6-11 6-12 MPC8260 PowerQUICC II Users Manual MOTOROLA Note that CPM port multiplexing is described in the Chapter 35, Parallel I/O Ports. Chapter 7 60x Signals 7-2 MPC8260 PowerQUICC II Users Manual MOTOROLA 7.1 Signal Conguration Figure 7-1. PowerPC Signal Groupings 7.2 Signal Descriptions 7.2.1 Address Bus Arbitration Signals 7.2.1.1 Bus Request (BR)Output 7.2.1.2 Bus Grant (BG) 7.2.1.3 Address Bus Busy (ABB) 7.2.2 Address Transfer Start Signal 7.2.2.1 Transfer Start (TS) 7.2.2.2 Transfer Start (TS)Input 7.2.3 Address Transfer Signals 7.2.3.1 Address Bus (A[031]) 7.2.4 Address Transfer Attribute Signals 7.2.4.1 Transfer Type (TT[04]) 7.2.4.2 Transfer Size (TSIZ[03]) 7.2.4.3 Transfer Burst (TBST) 7.2.4.4 Global (GBL) 7.2.4.5 Caching-Inhibited (CI)Output 7.2.4.6 Write-Through (WT)Output 7.2.5 Address Transfer Termination Signals 7.2.5.1 Address Acknowledge (AACK) 7.2.5.2 Address Retry (ARTRY) 7.2.6 Data Bus Arbitration Signals 7.2.6.1 Data Bus Grant (DBG) 7.2.6.2 Data Bus Busy (DBB) 7.2.7 Data Transfer Signals 7.2.7.1 Data Bus (D[063]) 7.2.7.2 Data Bus Parity (DP[07]) 7.2.8 Data Transfer Termination Signals 7.2.8.1 Transfer Acknowledge (TA) 7.2.8.2 Transfer Error Acknowledge (TEA) 7.2.8.3 Partial Data Valid Indication (PSDVAL) Page Chapter 8 The 60x Bus 8.1 Terminology 8.2 Bus Conguration 8.2.1 Single MPC8260 Bus Mode 8.2.2 60x-Compatible Bus Mode 8-4 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 8-2. 60x-Compatible Bus Mode 8.3 60x Bus Protocol Overview 8.3.1 Arbitration Phase Page 8.3.2 Address Pipelining and Split-Bus Transactions 8.4 Address Tenure Operations 8.4.1 Address Arbitration Page 8.4.2 Address Pipelining 8-10 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 8-5. Address Pipelining 8.4.3 Address Transfer Attribute Signals 8.4.3.1 Transfer Type Signal (TT[04]) Encoding Table 8-2. Transfer Type Encoding MOTOROLA Chapter 8. The 60x Bus 8-11 Table 8-2. Transfer Type Encoding (Continued) 8-12 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 8-2. Transfer Type Encoding (Continued) 8.4.3.2 Transfer Code Signals TC[02] 8.4.3.3 TBST and TSIZ[03] Signals and Size of Transfer 8.4.3.4 Burst Ordering During Data Transfers 8.4.3.5 Effect of Alignment on Data Transfers Page 8.4.3.6 Effect of Port Size on Data Transfers MOTOROLA Chapter 8. The 60x Bus 8-17 Figure 8-6. Interface to Different Port Size Devices 8-18 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 8-9 lists data transfer patterns for write cycles for accesses initiated by the MPC8260. Table 8-8. Data Bus Requirements For Read Cycle MOTOROLA Chapter 8. The 60x Bus 8-19 8.4.3.7 60x-Compatible Bus ModeSize Calculation Table 8-9. Data Bus Contents for Write Cycles 8-20 MPC8260 PowerQUICC II Users Manual MOTOROLA 8.4.3.8 Extended Transfer Mode Table 8-10. Address and Size State Calculations MOTOROLA Chapter 8. The 60x Bus 8-21 Table 8-11. Data Bus Contents for Extended Write Cycles Table 8-12. Data Bus Requirements for Extended Read Cycles 8-22 MPC8260 PowerQUICC II Users Manual MOTOROLA Extended transfer mode is enabled by setting the BCR[ETM]. Table 8-13. Address and Size State for Extended Transfers 8.4.4 Address Transfer Termination 8.4.4.1 Address Retried with ARTRY Page 8.4.4.2 Address Tenure Timing Conguration 8.4.5 Pipeline Control 8.5 Data Tenure Operations 8.5.1 Data Bus Arbitration 8.5.2 Data Streaming Mode 8.5.3 Data Bus Transfers and Normal Termination 8.5.4 Effect of ARTRY Assertion on Data Transfer and Arbitration 8.5.5 Port Size Data Bus Transfers and PSDVAL Termination Page 8.5.6 Data Bus Termination by Assertion of TEA 8.6 Memory CoherencyMEI Protocol 8.7 Processor State Signals 8.7.1 Support for the lwarx/stwcx. Instruction Pair 8.7.2 TLBISYNC Input 8.8 Little-Endian Mode Page Chapter 9 Clocks and Power Control 9.1 Clock Unit 9-2 MPC8260 PowerQUICC II Users Manual MOTOROLA 9.2 Clock Conguration Table 9-1. Clock Default Modes Table 9-2. Clock Configuration Modes MOTOROLA Chapter 9. Clocks and Power Control 9-3 Table 9-2. Clock Configuration Modes (Continued) 9-4 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 9-2. Clock Configuration Modes (Continued) 9.3 External Clock Inputs 9.4 Main PLL 9.4.1 PLL Block Diagram 9.4.2 Skew Elimination 9.5 Clock Dividers 9.6 The MPC8260s Internal Clock Signals 9.6.1 General System Clocks 9.7 PLL Pins 9-8 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 9-2. PLL Filtering Circuit 9.8 System Clock Control Register (SCCR) Table 9-4 describes SCCR elds. Figure 9-3. System Clock Control Register (SCCR) Table 9-4. SCCR Field Descriptions MOTOROLA Chapter 9. Clocks and Power Control 9-9 9.9 System Clock Mode Register (SCMR) Table 9-5 describes SCMR elds. Figure 9-4. System Clock Mode Register (SCMR) Table 9-5. SCMR Field Descriptions Table 9-4. SCCR Field Descriptions 9.10 Basic Power Structure Chapter 10 Memory Controller Page MOTOROLA Chapter 10. Memory Controller 10-3 Figure 10-1. Dual-Bus Architecture 10.1 Features Page 10.2 Basic Architecture Page Page 10.2.1 Address and Address Space Checking 10.2.2 Page Hit Checking 10.2.3 Error Checking and Correction (ECC) 10.2.4 Parity Generation and Checking 10.2.5 Transfer Error Acknowledge (TEA) Generation 10.2.6 Machine Check Interrupt (MCP) Generation 10.2.7 Data Buffer Controls (BCTLx) 10.2.8 Atomic Bus Operation 10.2.9 Data Pipelining 10.2.10 External Memory Controller Support 10.2.11 External Address Latch Enable Signal (ALE) 10.2.12 ECC/Parity Byte Select (PBSE) 10.2.13 Partial Data Valid Indication (PSDVAL) MOTOROLA Chapter 10. Memory Controller 10-13 Figure 10-5. Partial Data Valid for 32-Bit Port Size Memory, Double-Word Transfer 10.3 Register Descriptions Table 10-2 lists registers used to control the 60x bus memory controller. Table 10-2. 60x Bus Memory Controller Registers Internal 10-14 MPC8260 PowerQUICC II Users Manual MOTOROLA 10.3.1 Base Registers (BRx) Table 10-3 describes BRx elds. Figure 10-6. Base Registers (BRx) Table 10-3. BRx Field Descriptions MOTOROLA Chapter 10. Memory Controller 10-15 Table 10-3. BRx Field Descriptions (Continued) 10.3.2 Option Registers (ORx) MOTOROLA Chapter 10. Memory Controller 10-17 Table 10-4. ORx Field Descriptions (SDRAM Mode) (Continued) 10-18 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-8 shows ORx as it is formatted for GPCM mode. Table 10-5 describes ORx elds in GPCM mode. 1 11 0 1111 0 1 0 0 Figure 10-8. ORx GPCM Mode Table 10-5. ORxGPCM Mode Field Descriptions Table 10-4. ORx Field Descriptions (SDRAM Mode) (Continued) Table 10-5. ORxGPCM Mode Field Descriptions (Continued) 10-20 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-9 shows ORx as it is formatted for UPM mode. Table 10-6 describes the ORx elds in UPM mode. Figure 10-9. ORxUPM Mode Table 10-6. Option Register (ORx)UPM Mode MOTOROLA Chapter 10. Memory Controller 10-21 10.3.3 60x SDRAM Mode Register (PSDMR) Table 10-7 describes PSMDR elds. LSMDR elds are described in Table 10-8. CL Figure 10-10. 60x/Local SDRAM Mode Register (PSDMR/LSDMR) Table 10-7. PSDMR Field Descriptions 10-22 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 10-7. PSDMR Field Descriptions (Continued) MOTOROLA Chapter 10. Memory Controller 10-23 Table 10-7. PSDMR Field Descriptions (Continued) 10-24 MPC8260 PowerQUICC II Users Manual MOTOROLA 10.3.4 Local Bus SDRAM Mode Register (LSDMR) Table 10-8. LSDMR Field Descriptions MOTOROLA Chapter 10. Memory Controller 10-25 Table 10-8. LSDMR Field Descriptions (Continued) 10-26 MPC8260 PowerQUICC II Users Manual MOTOROLA 10.3.5 Machine A/B/C Mode Registers (MxMR) 100 Figure 10-11. Machine x Mode Registers (MxMR) Table 10-8. LSDMR Field Descriptions (Continued) MOTOROLA Chapter 10. Memory Controller 10-27 Table 10-9 describes MxMR bits. Table 10-9. Machine x Mode Registers (MxMR) 10-28 MPC8260 PowerQUICC II Users Manual MOTOROLA 10.3.6 Memory Data Register (MDR) Table 10-9. Machine x Mode Registers (MxMR) (Continued) MOTOROLA Chapter 10. Memory Controller 10-29 Table 10-10 describes MDR elds. 10.3.7 Memory Address Register (MAR) Figure 10-13. Memory Address Register (MAR) The memory address register (MAR) is shown in Figure 10-13. Figure 10-12. Memory Data Register (MDR) Table 10-10. MDR Field Descriptions 10-30 MPC8260 PowerQUICC II Users Manual MOTOROLA 10.3.8 60x Bus-Assigned UPM Refresh Timer (PURT) The local bus assigned UPM refresh timer register (LURT) is shown in Figure 10-15. The 60x bus assigned UPM refresh timer register (PURT) is shown in Figure 10-14. Table 10-12 describes PURT elds. 10.3.9 Local Bus-Assigned UPM Refresh Timer (LURT) 10.3.10 60x Bus-Assigned SDRAM Refresh Timer (PSRT) Table 10-14 describes PSRT elds. The 60x bus assigned SDRAM refresh timer register (PSRT) is shown in Figure 10-16. Table 10-13. Local Bus-Assigned UPM Refresh Timer (LURT) 10-32 MPC8260 PowerQUICC II Users Manual MOTOROLA 10.3.11 Local Bus-Assigned SDRAM Refresh Timer (LSRT) The local bus-assigned SDRAM refresh timer register (LSRT) is shown in Figure 10-17. Table 10-16 describes MPTPR elds. Table 10-15 describes LSRT elds. 10.3.12 Memory Refresh Timer Prescaler Register (MPTPR) 10.4 SDRAM Machine 10-34 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-19. 128-Mbyte SDRAM (Eight-Bank Configuration, Banks 1 and 8 Shown) 10.4.1 Supported SDRAM Congurations 10.4.2 SDRAM Power-On Initialization 10.4.3 JEDEC-Standard SDRAM Interface Commands 10.4.4 Page-Mode Support and Pipeline Accesses 10.4.5 Bank Interleaving 10.4.5.1 SDRAM Address Multiplexing (SDAM and BSMA) 10.4.6 SDRAM Device-Specic Parameters 10.4.6.1 Precharge-to-Activate Interval MOTOROLA Chapter 10. Memory Controller 10-39 Figure 10-20. PRETOACT = 2 (2 Clock Cycles) 10.4.6.2 Activate to Read/Write Interval This parameter, controlled by P/LSDMR[ACTTORW], denes the earliest timing for READ/WRITE command after an ACTIVATE command. Figure 10-21. ACTTORW = 2 (2 Clock Cycles) 10-40 MPC8260 PowerQUICC II Users Manual MOTOROLA 10.4.6.3 Column Address to First Data OutCAS Latency Figure 10-22. CL = 2 (2 Clock Cycles) 10.4.6.4 Last Data Out to Precharge This parameter, controlled by P/LSDMR[LDOTOPRE], denes the earliest timing for the PRECHARGE command after the last data was read from the SDRAM. It is always related to 10.4.6.5 Last Data In to PrechargeWrite Recovery Figure 10-24. WRC = 2 (2 Clock Cycles) 10.4.6.6 Refresh Recovery Interval (RFRC) This parameter, controlled by P/LSDMR[RFRC], denes the earliest timing for an ACTIVATE command after a REFRESH command. 10.4.6.8 External Address and Command Buffers (BUFCMD) 10.4.7 SDRAM Interface Timing MOTOROLA Chapter 10. Memory Controller 10-43 Figure 10-28. SDRAM Single-Beat Read, Page Closed, CL = 3 Figure 10-29. SDRAM Single-Beat Read, Page Hit, CL = 3 Figure 10-30. SDRAM Two-Beat Burst Read, Page Closed, CL = 3 10-44 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-31. SDRAM Four-Beat Burst Read, Page Miss, CL = 3 Figure 10-32. SDRAM Single-Beat Write, Page Hit Figure 10-33. SDRAM Three-Beat Burst Write, Page Closed MOTOROLA Chapter 10. Memory Controller 10-45 Figure 10-34. SDRAM Read-after-Read Pipeline, Page Hit, CL = 3 Figure 10-35. SDRAM Write-after-Write Pipelined, Page Hit Figure 10-36. SDRAM Read-after-Write Pipelined, Page Hit 10.4.8 SDRAM Read/Write Transactions 10.4.9 SDRAM MODE-SET Command Timing 10.4.10 SDRAM Refresh 10.4.11 SDRAM Refresh Timing 10.4.12 SDRAM Conguration Examples 10.4.12.1 SDRAM Conguration Example (Page-Based Interleaving) Page 10.4.13 SDRAM Conguration Example (Bank-Based Interleaving) 10.5 General-Purpose Chip-Select Machine (GPCM) 10-52 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-40. GPCM-to-SRAM Conguration 10.5.1 Timing Conguration Table 10-30. GPCM Strobe Signal Behavior 10.5.1.1 Chip-Select Assertion Timing 10.5.1.2 Chip-Select and Write Enable Deassertion Timing MOTOROLA Chapter 10. Memory Controller 10-55 Figure 10-45. GPCM Memory Device Basic Timing (ACS 00, CSNT = 1, TRLX = 0) 10.5.1.3 Relaxed Timing Figure 10-46. GPCM Relaxed Timing Read (ACS = 1x, SCY = 1, CSNT = 0, TRLX = 1) Page 10.5.1.4 Output Enable (OE) Timing 10.5.1.5 Programmable Wait State Conguration 10.5.1.6 Extended Hold Time on Read Accesses 10-58 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-50 through Figure 10-53 show timing examples. Figure 10-50. GPCM Read Followed by Read (ORx[2930] = 0x, Fastest Timing) Table 10-31. TRLX and EHTR Combinations MOTOROLA Chapter 10. Memory Controller 10-59 Figure 10-51. GPCM Read Followed by Read (ORx[2930] = 01) Figure 10-52. GPCM Read Followed by Write (ORx[2930] = 01) 10.5.2 External Access Termination 10.5.3 Boot Chip-Select Operation 10.5.4 Differences between MPC8xxs GPCM and MPC8260s GPCM 10.6 User-Programmable Machines (UPMs) Page 10.6.1 Requests 10.6.1.1 Memory Access Requests 10.6.1.2 UPM Refresh Timer Requests 10.6.1.3 Software RequestsRUN Command 10.6.1.4 Exception Requests 10.6.2 Programming the UPMs 10.6.3 Clock Timing Page 10.6.4 The RAM Array 10-70 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-61. RAM Array and Signal Generation 10.6.4.1 RAM Words Figure 10-62. The RAM Word MOTOROLA Chapter 10. Memory Controller 10-71 Table 10-35 describes RAM word elds. Table 10-35. RAM Word Bit Settings 10-72 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 10-35. RAM Word Bit Settings (Continued) MOTOROLA Chapter 10. Memory Controller 10-73 Page Page Page 10.6.4.2 Address Multiplexing 10.6.4.3 Data Valid and Data Sample Control 10.6.4.4 Signals Negation 10.6.4.5 The Wait Mechanism 10.6.4.6 Extended Hold Time on Read Accesses 10.6.5 UPM DRAM Conguration Example 10.6.6 Differences between MPC8xx UPM and MPC8260 UPM 10.7 Memory System Interface Example Using UPM 10-82 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-67. DRAM Interface Connection to the 60x Bus (64-Bit Port Size) Table 10-41. UPMs Attributes Example MOTOROLA Chapter 10. Memory Controller 10-83 Figure 10-68. Single-Beat Read Access to FPM DRAM 10-84 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-69. Single-Beat Write Access to FPM DRAM Figure 10-70. Burst Read Access to FPM DRAM (No LOOP) MOTOROLA Chapter 10. Memory Controller 10-85 10-86 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-71. Burst Read Access to FPM DRAM (LOOP) MOTOROLA Chapter 10. Memory Controller 10-87 Figure 10-72. Burst Write Access to FPM DRAM (No LOOP) 10-88 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-73. Refresh Cycle (CBR) to FPM DRAM MOTOROLA Chapter 10. Memory Controller 10-89 Figure 10-74. Exception Cycle Page MOTOROLA Chapter 10. Memory Controller 10-91 Figure 10-75. FPM DRAM Burst Read Access (Data Sampling on Falling Edge of CLKIN) 10-92 MPC8260 PowerQUICC II Users Manual MOTOROLA 10.7.0.1 EDO Interface Example Figure 10-76. MPC8260/EDO Interface Connection to the 60x Bus Table 10-43. EDO Connection Field Value Example MOTOROLA Chapter 10. Memory Controller 10-93 Figure 10-77. Single-Beat Read Access to EDO DRAM 10-94 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-78. Single-Beat Write Access to EDO DRAM MOTOROLA Chapter 10. Memory Controller 10-95 Figure 10-79. Single-Beat Write Access to EDO DRAM Using REDO to Insert Three Wait States 10-96 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-80. Burst Read Access to EDO DRAM MOTOROLA Chapter 10. Memory Controller 10-97 Figure 10-81. Burst Write Access to EDO DRAM 10-98 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 10-82. Refresh Cycle (CBR) to EDO DRAM MOTOROLA Chapter 10. Memory Controller 10-99 Figure 10-83. Exception Cycle For EDO DRAM 10.8 Handling Devices with Slow or Variable Access Times 10.8.1 Hierarchical Bus Interface Example 10.8.2 Slow Devices Example 10.9 External Master Support (60x-Compatible Mode) 10.9.1 60x-Compatible External Masters 10.9.2 MPC8260-Type External Masters 10.9.3 Extended Controls in 60x-Compatible Mode 10.9.4 Using BNKSEL SIgnals in Single-MPC8260 Bus Mode 10.9.5 Address Incrementing for External Bursting Masters 10.9.6 External Masters Timing Page 10.9.6.1 Example of External Master Using the SDRAM Machine MOTOROLA Chapter 10. Memory Controller 10-105 Figure 10-86. External Master Configuration with SDRAM Device Page Chapter 11 Secondary (L2) Cache Support 11.1 L2 Cache Congurations 11.1.1 Copy-Back Mode 11-2 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 11-1. L2 Cache in Copy-Back Mode 11.1.2 Write-Through Mode Page 11-4 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 11-2. External L2 Cache in Write-Through Mode 11.1.3 ECC/Parity Mode Page 11-6 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 11-3. External L2 Cache in ECC/Parity Mode 11.2 L2 Cache Interface Parameters 11.3 System Requirements When Using the L2 Cache Interface 11.4 L2 Cache Operation 11.5 Timing Example MOTOROLA Chapter 11. Secondary (L2) Cache Support 11-9 Figure 11-4. Read Access with L2 Cache Page Chapter 12 IEEE 1149.1 Test Access Port 12.1 Overview 12-2 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 12-1. Test Logic Block Diagram The TAP consists of the signals in Table 12-1. 12.2 TAP Controller Table 12-1. TAP Signals 12.3 Boundary Scan Register 12-4 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 12-3. Output Pin Cell (O.Pin) Figure 12-4. Observe-Only Input Pin Cell (I.Obs) 12-5 12-6 Table 12-2. Boundary Scan Bit Definition 12-7 12-8 12-9 12-10 12-11 12-12 12-13 12-14 12-15 12-16 12-17 12-18 12-19 12-20 12-21 12-22 12-23 12-24 12-25 12-26 12-27 12-28 12.4 Instruction Register 12-29 Table 12-3. Instruction Decoding 12.5 MPC8260 Restrictions 12.6 Nonscan Chain Operation Part IV Communications Processor Module Page Page Page MOTOROLA Part IV. Communications Processor Module Part IV-v Table vii. Acronyms and Abbreviated Terms Part IV-vi MOTOROLA Table vii. Acronyms and Abbreviated Terms (Continued) MOTOROLA Part IV. Communications Processor Module Part IV-vii Page Chapter 13 Communications Processor Module 13.1 Features Page MOTOROLA Chapter 13. Communications Processor Module Overview 13-3 Figure 13-1. MPC8260 CPM Block Diagram 13.2 MPC8260 Serial Congurations Table 13-1. Possible MPC8260 Applications 13.3 Communications Processor (CP) 13.3.1 Features 13.3.2 CP Block Diagram MOTOROLA Chapter 13. Communications Processor Module Overview 13-5 Figure 13-2 shows the CP block diagram. Figure 13-2. Communications Processor (CP) Block Diagram 13.3.3 PowerPC Core Interface 13.3.4 Peripheral Interface 13.3.5 Execution from RAM 13.3.6 RISC Controller Conguration Register (RCCR) RCCR bit elds are described in Table 13-3. 13-8 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 13. Communications Processor Module Overview 13-9 13.3.7 RISC Time-Stamp Control Register (RTSCR) Figure 13-4. RISC Time-Stamp Control Register (RTSCR) Table 13-3. RISC Controller Configuration Register Field Descriptions (Continued) 13.3.8 RISC Time-Stamp Register (RTSR) 13.3.9 RISC Microcode Revision Number 13.4 Command Set 13.4.1 CP Command Register (CPCR) 13-12 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 13-6. CP Command Register Field Descriptions (Continued) MOTOROLA Chapter 13. Communications Processor Module Overview 13-13 13.4.1.1 CP Commands The CP command opcodes are shown in Table 13-7. Table 13-7. CP Command Opcodes 13-14 MPC8260 PowerQUICC II Users Manual MOTOROLA The commands in Table 13-7 are described in Table 13-8. Table 13-8. Command Descriptions 13.4.2 Command Register Example 13.4.3 Command Execution Latency 13.5 Dual-Port RAM 13-16 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 13-8. Dual-Port RAM Memory Map 13.5.1 Buffer Descriptors (BDs) 13.5.2 Parameter RAM 13-18 MPC8260 PowerQUICC II Users Manual MOTOROLA 13.6 RISC Timer Tables Table 13-10. Parameter RAM 13.6.1 RISC Timer Table Parameter RAM 13-20 MPC8260 PowerQUICC II Users Manual MOTOROLA 13.6.2 RISC Timer Command Register (TM_CMD) Figure 13-10. RISC Timer Command Register (TM_CMD) Figure 13-10 shows the RISC timer command register (TM_CMD). Table 13-11. RISC Timer Table Parameter RAM 13.6.3 RISC Timer Table Entries 13.6.4 RISC Timer Event Register (RTER)/Mask Register (RTMR) 13.6.5 SET TIMER Command 13.6.6 RISC Timer Initialization Sequence 13.6.7 RISC Timer Initialization Example 13.6.8 RISC Timer Interrupt Handling 13.6.9 RISC Timer Table Scan Algorithm 13.6.10 Using the RISC Timers to Track CP Loading Page 14-2 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 14-1. SI Block Diagram 14.1 Features 14.2 Overview MOTOROLA Chapter 14. Serial Interface with Time-Slot Assigner 14-5 Figure 14-2. Various Configurations of a Single TDM Channel Page 14.3 Enabling Connections to TSA 14.4 Serial Interface RAM 14.4.1 One Multiplexed Channel with Static Frames 14.4.2 One Multiplexed Channel with Dynamic Frames 14.4.3 Programming SI RAM Entries Chapter 14. Serial Interface with Time-Slot Assigner 14-11 RAM Entry (MCC = 0) Page Chapter 14. Serial Interface with Time-Slot Assigner 14.4.4 SI RAM Programming Example 14.4.5 Static and Dynamic Routing Page 14-16 Figure 14-9. Example: SI x RAM Dynamic Changes, TDMa and b, Same SI RAM Size 14.5 Serial Interface Registers MR) 14.5.2 SI Mode Registers (SI 14.5.1 SI Global Mode Registers (SI Table 14-5 describes SIxMR elds. 14-18 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 14-11. SI Mode Registers (SIxMR) Table 14-5. SIxMR Field Descriptions MOTOROLA Chapter 14. Serial Interface with Time-Slot Assigner 14-19 Table 14-5. SIxMR Field Descriptions (Continued) 14-20 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 14-12 shows the one-clock delay from sync to data when xFSD = 01. Figure 14-12. One-Clock Delay from Sync to Data (xFSD = 01) Figure 14-13 shows the elimination of the single-clock delay shown in Figure 14-12 by clearing xFSD. Figure 14-13. No Delay from Sync to Data (xFSD = 00) Table 14-5. SIxMR Field Descriptions (Continued) Figure 14-14 shows the effects of changing FE when CE = 1 with a 1-bit frame sync delay. Figure 14-14. Falling Edge (FE) Effect When CE = 1 and xFSD = 01 Figure 14-15 shows the effects of changing FE when CE = 0 with a 1-bit frame sync delay. Figure 14-15. Falling Edge (FE) Effect When CE = 0 and xFSD = 01 14-22 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 14-16 shows the effects of changing FE when CE = 1 with no frame sync delay. Figure 14-16. Falling Edge (FE) Effect When CE = 1 and xFSD = 00 MOTOROLA Chapter 14. Serial Interface with Time-Slot Assigner 14-23 Figure 14-17 shows the effects of changing FE when CE = 0 with no frame sync delay. Figure 14-17. Falling Edge (FE) Effect When CE = 0 and xFSD = 00 14.5.3 SIx RAM Shadow Address Registers (SIxRSR) 14-24 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 14-6 describes SIxRSR elds. 14.5.4 SI Command Register (SIxCMDR) Figure 14-19. SI Command Register (SIxCMDR) Figure 14-18. SIx RAM Shadow Address Registers (SIxRSR) Table 14-6. SIxRSR Field Descriptions MOTOROLA Chapter 14. Serial Interface with Time-Slot Assigner 14-25 Table 14-7 describes SIxCMDR elds. 14.6 Serial Interface IDL Interface Support Table 14-7. SIxCMDR Field Description Figure 14-20. SI Status Registers (SIxSTR) Table 14-8. SIxSTR Field Descriptions 14.6.1 IDL Interface Example MOTOROLA Chapter 14. Serial Interface with Time-Slot Assigner 14-27 Figure 14-22. IDL Terminal Adaptor Table 14-9. IDL Signal Descriptions Page 14.6.2 IDL Interface Programming Page 14.7 Serial Interface GCI Support Page 14.7.1 SI GCI Activation/Deactivation Procedure 14.7.2 Serial Interface GCI Programming 14.7.2.1 Normal Mode GCI Programming 14.7.2.2 SCIT Programming Page Page Page Chapter 15 CPM Multiplexing 15-2 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 15-1. CPM Multiplexing Logic (CMX) Block Diagram 15.1 Features 15.2 Enabling Connections to TSA or NMSI 15.3 NMSI Conguration MOTOROLA Chapter 15. CPM Multiplexing 15-5 Figure 15-3. Bank of Clocks 15-6 MPC8260 PowerQUICC II Users Manual MOTOROLA 15.4 CMX Registers The following sections describe the CMX registers. Table 15-1. Clock Source Options 15.4.1 CMX UTOPIA Address Register (CMXUAR) Page MOTOROLA Chapter 15. CPM Multiplexing 15-9 Figure 15-6. Connection of the Slave Address 15-10 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 15-7. Multi-PHY Receive Address Multiplexing 15.4.2 CMX SI1 Clock Route Register (CMXSI1CR) FCC1 FCC2 MOTOROLA Chapter 15. CPM Multiplexing 15-11 Addr 15.4.3 CMX SI2 Clock Route Register (CMXSI2CR) Figure 15-8. CMX SI1 Clock Route Register (CMXSI1CR) Table 15-3. CMXSI1CR Field Descriptions 15-12 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 15-4 describes CMXSI2CR elds. 15.4.4 CMX FCC Clock Route Register (CMXFCR) Figure 15-9. CMX SI2 Clock Route Register (CMXSI2CR) Table 15-4. CMXSI2CR Field Descriptions Table 15-5 describes CMXFCR elds. MOTOROLA Chapter 15. CPM Multiplexing 15-13 Figure 15-10. CMX FCC Clock Route Register (CMXFCR) Table 15-5. CMXFCR Field Descriptions 15-14 MPC8260 PowerQUICC II Users Manual MOTOROLA 15.4.5 CMX SCC Clock Route Register (CMXSCR) Table 15-5. CMXFCR Field Descriptions (Continued) Table 15-6 describes CMXSCR elds. MOTOROLA Chapter 15. CPM Multiplexing 15-15 Figure 15-11. CMX SCC Clock Route Register (CMXSCR) Table 15-6. CMXSCR Field Descriptions 15-16 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 15-6. CMXSCR Field Descriptions (Continued) MOTOROLA Chapter 15. CPM Multiplexing 15-17 15.4.6 CMX SMC Clock Route Register (CMXSMR) Table 15-6. CMXSCR Field Descriptions (Continued) Table 15-7 describes CMXSMR elds. 15-18 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 15-12. CMX SMC Clock Route Register (CMXSMR) Table 15-7. CMXSMR Field Descriptions Chapter 16 Baud-Rate Generators (BRGs) 16.1 BRG Conguration Registers 18 (BRGCx) MOTOROLA Chapter 16. Baud-Rate Generators (BRGs) 16-3 Table 16-1 describes the BRGCx elds. Table 16-2 shows the possible external clock sources for the BRGs. Table 16-1. BRGCx Field Descriptions 16.2 Autobaud Operation on a UART 16.3 UART Baud Rate Examples Page MOTOROLA Chapter 17. Timers 17-1 Chapter 17 Timers Figure 17-1. Timer Block Diagram Pin assignments for TINx, TGATEx, and TOUTx are described in Section 35.5, Ports Tables. 17.1 Features 17.2 General-Purpose Timer Units 17.2.1 Cascaded Mode 17.2.2 Timer Global Conguration Registers (TGCR1 and TGCR2) MOTOROLA Chapter 17. Timers 17-5 The TGCR2 register is shown in Figure 17-4. Table 17-2 describes TGCR2 elds. Figure 17-4. Timer Global Configuration Register 2 (TGCR2) Table 17-2. TGCR2 Field Descriptions Table 17-1. TGCR1 Field Descriptions (Continued) 17-6 MPC8260 PowerQUICC II Users Manual MOTOROLA 17.2.3 Timer Mode Registers (TMR1TMR4) Table 17-3 describes TMR1TMR4 register elds. Figure 17-5. Timer Mode Registers (TMR1TMR4) Table 17-3. TMRITMR4 Field Descriptions Table 17-2. TGCR2 Field Descriptions (Continued) MOTOROLA Chapter 17. Timers 17-7 17.2.4 Timer Reference Registers (TRR1TRR4) Figure 17-6. Timer Reference Registers (TRR1TRR4) Table 17-3. TMRITMR4 Field Descriptions (Continued) 17.2.5 Timer Capture Registers (TCR1TCR4) 17.2.6 Timer Counters (TCN1TCN4) 17.2.7 Timer Event Registers (TER1TER4) Table 17-4 describes TER elds. Table 17-4. TER Field Descriptions Page Chapter 18 SDMA Channels and IDMA Emulation 18.1 SDMA Bus Arbitration and Bus Transfers 18.2 SDMA Registers 18.2.1 SDMA Status Register (SDSR) 18.2.2 SDMA Mask Register (SDMR) 18.2.3 SDMA Transfer Error Address Registers (PDTEA and LDTEA) 18.2.4 SDMA Transfer Error MSNUM Registers (PDTEM and LDTEM) 18.3 IDMA Emulation 18.4 IDMA Features 18.5 IDMA Transfers 18.5.1 Memory-to-Memory Transfers Page 18.5.1.1 External Request Mode 18.5.1.2 Normal Mode 18.5.2 Memory to/from Peripheral Transfers 18.5.2.1 Dual-Address Transfers 18.5.2.2 Single Address (Fly-By) Transfers 18.5.3 Controlling 60x Bus Bandwidth 18.6 IDMA Priorities 18.7 IDMA Interface Signals 18.7.1 DREQx and DACKx 18.7.1.1 Level-Sensitive Mode 18.7.1.2 Edge-Sensitive Mode 18.7.2 DONEx 18.8 IDMA Operation 18.8.1 Auto Buffer and Buffer Chaining 18.8.2 IDMAx Parameter RAM MOTOROLA Chapter 18. SDMA Channels and IDMA Emulation 18-17 Table 18-4. IDMAx Parameter RAM (Continued) 18-18 MPC8260 PowerQUICC II Users Manual MOTOROLA 18.8.2.1 DMA Channel Mode (DCM) Table 18-5 describes DCM bits. Figure 18-8. DCM Parameters Table 18-5. DCM Field Descriptions 18-19 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 18-5. DCM Field Descriptions (Continued) 18-20 MPC8260 PowerQUICC II Users Manual MOTOROLA 18.8.2.2 Data Transfer Types as Programmed in DCM Table 18-6 summarizes the types of data transfers according to the DCM programming. 18.8.2.3 Programming DTS and STS Table 18-6. IDMA Channel Data Transfer Operation MOTOROLA Chapter 18. SDMA Channels and IDMA Emulation 18-21 Table 18-7 describes valid STS/DTS values for memory-to-memory operations. Table 18-8 describes valid STS/DTS values for memory/peripheral operations. Table 18-7. Valid Memory-to-Memory STS/DTS Values Table 18-8. Valid STS/DTS Values for Peripherals 18.8.3 IDMA Performance 18.8.4 IDMA Event Register (IDSR) and Mask Register (IDMR) 18-23 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 18-9 describes IDSR/IDMR elds. 18.8.5 IDMA BDs Figure 18-10. IDMA BD Structure Figure 18-9. IDMA Event/Mask Registers (IDSR/IDMR) Table 18-9. IDSR/IDMR Field Descriptions 18-24 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 18-10 describes IDMA BD elds. Table 18-10. IDMA BD Field Descriptions 18-25 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 18-10. IDMA BD Field Descriptions (Continued) 18.9 IDMA Commands 18.9.1 START_IDMA Command 18.9.2 STOP_IDMA Command 18.10 IDMA Bus Exceptions 18.10.1 Externally Recognizing IDMA Operand Transfers 18.11 Programming the Parallel I/O Registers 18.12 IDMA Programming Examples 18.12.1 Peripheral-to-Memory Mode (60x Bus to Local Bus)IDMA2 18-30 MPC8260 PowerQUICC II Users Manual MOTOROLA 18.12.2 Memory-to-Peripheral Fly-By Mode (Both on 60x Bus) IDMA3 Table 18-16. Example: Memory-to-Peripheral Fly-By Mode (on 60x)IDMA3 Table 18-15. Example: Peripheral-to-Memory ModeIDMA2 (Continued) 18-31 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 18-16. Example: Memory-to-Peripheral Fly-By Mode (on 60x)IDMA3 (Continued) Page Chapter 19 Serial Communications Controllers (SCCs) 19.1 Features 19.1.1 The General SCC Mode Registers (GSMR1GSMR4) 19-4 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 19-1 describes GSMR_H elds. Table 19-1. GSMR_H Field Descriptions MOTOROLA Chapter 19. Serial Communications Controllers (SCCs) 19-5 Table 19-1. GSMR_H Field Descriptions (Continued) 19-6 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 19-3 shows GSMR_L. Table 19-2 describes GSMR_L elds. Figure 19-3. GSMR_LGeneral SCC Mode Register (Low Order) Table 19-2. GSMR_L Field Descriptions MOTOROLA Chapter 19. Serial Communications Controllers (SCCs) 19-7 Table 19-2. GSMR_L Field Descriptions (Continued) 19-8 MPC8260 PowerQUICC II Users Manual MOTOROLA 19.1.2 Protocol-Specic Mode Register (PSMR) 19.1.3 Data Synchronization Register (DSR) 19.1.4 Transmit-on-Demand Register (TODR) 19.2 SCC Buffer Descriptors (BDs) Page Page 19.3 SCC Parameter RAM Table 19-4. SCC Parameter RAM Map for All Protocols (Continued) 19-14 MPC8260 PowerQUICC II Users Manual MOTOROLA 19.3.1 SCC Base Addresses 19.3.2 Function Code Registers (RFCR and TFCR) 19-16 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 19-6 describes RFCRx/TFCRx elds. 19.3.3 Handling SCC Interrupts Table 19-6. RFCRx /TFCRx Field Descriptions Table 19-7. SCCx Event, Mask, and Status Registers 19.3.4 Initializing the SCCs 19.3.5 Controlling SCC Timing with RTS, CTS, and CD 19.3.5.1 Synchronous Protocols MOTOROLA Chapter 19. Serial Communications Controllers (SCCs) 19-19 Figure 19-10. Output Delay from CTS Asserted for Synchronous Protocols 19-20 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 19-11. CTS Lost in Synchronous Protocols 19.3.5.2 Asynchronous Protocols 19-22 MPC8260 PowerQUICC II Users Manual MOTOROLA 19.3.6 Digital Phase-Locked Loop (DPLL) Operation Figure 19-13. DPLL Receiver Block Diagram Page 19.3.6.1 Encoding Data with a DPLL MOTOROLA Chapter 19. Serial Communications Controllers (SCCs) 19-25 Figure 19-15. DPLL Encoding Examples Table 19-9. DPLL Codings 19.3.7 Clock Glitch Detection 19.3.8 Reconguring the SCCs 19.3.8.1 General Reconguration Sequence for an SCC Transmitter 19.3.8.2 Reset Sequence for an SCC Transmitter 19.3.8.3 General Reconguration Sequence for an SCC Receiver 19.3.8.4 Reset Sequence for an SCC Receiver 19.3.8.5 Switching Protocols 19.3.9 Saving Power Page Chapter 20 SCC UART Mode 20.1 Features 20.2 Normal Asynchronous Mode 20.3 Synchronous Mode 20-4 MPC8260 PowerQUICC II Users Manual MOTOROLA 20.4 SCC UART Parameter RAM For UART mode, the protocol-specic area of the SCC parameter RAM is mapped as in Table 20-1. Table 20-1. UART-Specific SCC Parameter RAM Memory Map 20.5 Data-Handling Methods: Character- or Message- Based 20-6 MPC8260 PowerQUICC II Users Manual MOTOROLA 20.6 Error and Status Reporting 20.7 SCC UART Commands The transmit commands in Table 20-2 are issued to the CP command register (CPCR). Table 20-2. Transmit Commands 20.8 Multidrop Systems and Address Recognition 20.9 Receiving Control Characters Table 20-4 describes the data structure used in control character recognition. MOTOROLA Chapter 20. SCC UART Mode 20-9 20.10 Hunt Mode (Receiver) 20.11 Inserting Control Characters into the Transmit Data Stream 20.12 Sending a Break (Transmitter) 20.13 Sending a Preamble (Transmitter) 20.14 Fractional Stop Bits (Transmitter) 20-12 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 20-6 describes DSR elds. 20.15 Handling Errors in the SCC UART Controller Table 20-6. DSR Fields Descriptions Table 20-7. Transmission Errors MOTOROLA Chapter 20. SCC UART Mode 20-13 Reception errors are described in Table 20-8. 20.16 UART Mode Register (PSMR) Table 20-8. Reception Errors Table 20-9 describes PSMR UART elds. 20-14 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 20. SCC UART Mode 20-15 20.17 SCC UART Receive Buffer Descriptor (RxBD) Table 20-9. PSMR UART Field Descriptions (Continued) 20-16 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 20-7. SCC UART Receiving using RxBDs MOTOROLA Chapter 20. SCC UART Mode 20-17 Figure 20-8 shows the SCC UART RxBD. Table 20-10 describes RxBD status and control elds. 20-18 MPC8260 PowerQUICC II Users Manual MOTOROLA Section 19.2, SCC Buffer Descriptors (BDs), describes the data length and buffer pointer elds. 20.18 SCC UART Transmit Buffer Descriptor (TxBD) Table 20-11 describes TxBD status and control elds. Table 20-10. SCC UART RxBD Status and Control Field Descriptions (Continued) 20.19 SCC UART Event Register (SCCE) and Mask 20-20 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 20-10. SCC UART Interrupt Event Example Figure 20-11. SCC UART Event Register (SCCE) and Mask Register (SCCM) MOTOROLA Chapter 20. SCC UART Mode 20-21 Table 20-12 describes SCCE elds for UART mode. 20.20 SCC UART Status Register (SCCS) Figure 20-12. SCC Status Register for UART Mode (SCCS) The SCC UART status register (SCCS), shown in Figure 20-12, monitors the real-time status of RXD. Table 20-12. SCCE/SCCM Field Descriptions for UART Mode 20.21 SCC UART Programming Example 20.22 S-Records Loader Application Page Chapter 21 SCC HDLC Mode 21.1 SCC HDLC Features 21.2 SCC HDLC Channel Frame Transmission 21.3 SCC HDLC Channel Frame Reception 21.4 SCC HDLC Parameter RAM 21-4 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 21-1. HDLC-Specific SCC Parameter RAM Memory Map MOTOROLA Chapter 21. SCC HDLC Mode 21-5 Figure 21-2 shows 16- and 8-bit address recognition. Figure 21-2. HDLC Address Recognition 21.5 Programming the SCC in HDLC Mode 21.6 SCC HDLC Commands Table 21-2. Transmit Commands 21-6 MPC8260 PowerQUICC II Users Manual MOTOROLA Receive commands are described in Table 21-3. 21.7 Handling Errors in the SCC HDLC Controller Reception errors are described in Table 21-5. Table 21-3. Receive Commands Table 21-4. Transmit Errors Table 21-5. Receive Errors 21.8 HDLC Mode Register (PSMR) Table 21-6 describes PSMR HDLC elds. Figure 21-3. HDLC Mode Register (PSMR) Table 21-6. PSMR HDLC Field Descriptions Table 21-5. Receive Errors (Continued) 10 0 21.9 SCC HDLC Receive Buffer Descriptor (RxBD) The CP uses the RxBD, shown in Figure 21-4, to report on data received for each buffer. Figure 21-4. SCC HDLC Receive Buffer Descriptor (RxBD) Table 21-6. PSMR HDLC Field Descriptions (Continued) MOTOROLA Chapter 21. SCC HDLC Mode 21-9 Table 21-7 describes HDLC RxBD status and control elds. Descriptors (BDs). Because HDLC is a frame-based protocol, RxBD[Data Length] of the Table 21-7. SCC HDLC RxBD Status and Control Field Descriptions 21-10 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 21-5. SCC HDLC Receiving Using RxBDs MOTOROLA Chapter 21. SCC HDLC Mode 21-11 21.10 SCC HDLC Transmit Buffer Descriptor (TxBD) The CP uses the TxBD, shown in Figure 21-6, to conrm transmissions and indicate error conditions. Table 21-8 describes HDLC TxBD status and control elds. 21.11 HDLC Event Register (SCCE)/HDLC Mask MOTOROLA Chapter 21. SCC HDLC Mode 21-13 Figure 21-8 shows interrupts that can be generated using the HDLC protocol. Figure 21-8. SCC HDLC Interrupt Event Example Table 21-9. SCCE/SCCM Field Descriptions (Continued) 21.12 SCC HDLC Status Register (SCCS) 21.13 SCC HDLC Programming Examples 21.13.1 SCC HDLC Programming Example #1 21.13.2 SCC HDLC Programming Example #2 21.14 HDLC Bus Mode with Collision Detection Page 21.14.1 HDLC Bus Features 21.14.2 Accessing the HDLC Bus 21.14.3 Increasing Performance 21.14.4 Delayed RTS Mode 21.14.5 Using the Time-Slot Assigner (TSA) 21.14.6 HDLC Bus Protocol Programming 21.14.6.1 Programming GSMR and PSMR for the HDLC Bus Protocol 21.14.6.2 HDLC Bus Controller Programming Example Page Chapter 22 SCC BISYNC Mode 22.1 Features 22.2 SCC BISYNC Channel Frame Transmission 22.3 SCC BISYNC Channel Frame Reception 22.4 SCC BISYNC Parameter RAM Page MOTOROLA Chapter 22. SCC BISYNC Mode 22-5 22.5 SCC BISYNC Commands Receive commands are described in Table 22-2. Table 22-2. Transmit Commands Table 22-3. Receive Commands 22.6 SCC BISYNC Control Character Recognition MOTOROLA Chapter 22. SCC BISYNC Mode 22-7 Table 22-4 describes control character table and RCCM elds. 22.7 BISYNC SYNC Register (BSYNC) Figure 22-3. BISYNC SYNC (BSYNC) Table 22-4. Control Character Table and RCCM Field Descriptions 22.8 SCC BISYNC DLE Register (BDLE) 22.9 Sending and Receiving the Synchronization Sequence 22.10 Handling Errors in the SCC BISYNC 22-10 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 22-8 describes transmit errors. Table 22-9 describes receive errors. 22.11 BISYNC Mode Register (PSMR) Table 22-8. Transmit Errors Table 22-9. Receive Errors MOTOROLA Chapter 22. SCC BISYNC Mode 22-11 Table 22-10 describes PSMR elds. Table 22-10. PSMR Field Descriptions 22.12 SCC BISYNC Receive BD (RxBD) MOTOROLA Chapter 22. SCC BISYNC Mode 22-13 Table 22-11. SCC BISYNC RxBD Status and Control Field Descriptions (Continued) 22-14 MPC8260 PowerQUICC II Users Manual MOTOROLA 22.13 SCC BISYNC Transmit BD (TxBD) Table 22-12 describes SCC BISYNC TxBD status and control elds. 22.14 BISYNC Event Register (SCCE)/BISYNC Mask 22-16 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 22-13 describes SCCE and SCCM elds. 22.15 SCC Status Registers (SCCS) Figure 22-9. SCC Status Registers (SCCS) Table 22-13. SCCE/SCCM Field Descriptions 22.16 Programming the SCC BISYNC Controller 22.17 SCC BISYNC Programming Example Page Page Chapter 23 SCC Transparent Mode 23.1 Features 23.2 SCC Transparent Channel Frame Transmission Process 23.3 SCC Transparent Channel Frame Reception Process 23.4 Achieving Synchronization in Transparent Mode 23.4.1 Synchronization in NMSI Mode 23.4.1.1 In-Line Synchronization Pattern 23.4.1.2 External Synchronization Signals 23.4.1.3 Transparent Mode without Explicit Synchronization 23.4.2 Synchronization and the TSA 23.4.2.1 Inline Synchronization Pattern 23.4.2.2 Inherent Synchronization 23.4.3 End of Frame Detection 23.5 CRC Calculation in Transparent Mode 23.6 SCC Transparent Parameter RAM MOTOROLA Chapter 23. SCC Transparent Mode 23-7 23.7 SCC Transparent Commands Table 23-2. SCC Transparent Parameter RAM Memory Map Table 23-3. Transmit Commands 23-8 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 23-4 describes receive commands. 23.8 Handling Errors in the Transparent Controller Table 23-6 describes receive errors. Table 23-4. Receive Commands Table 23-5. Transmit Errors Table 23-6. Receive Errors 23.9 Transparent Mode and the PSMR 23.10 SCC Transparent Receive Buffer Descriptor (RxBD) 23.11 SCC Transparent Transmit Buffer Descriptor (TxBD) Table 23-8 describes SCC Transparent TxBD status and control elds. MOTOROLA Chapter 23. SCC Transparent Mode 23-11 23.12 SCC Transparent Event Register (SCCE)/Mask 23.13 SCC Status Register in Transparent Mode (SCCS) 23.14 SCC2 Transparent Programming Example Page Page Page Chapter 24 SCC Ethernet Mode 24.1 Ethernet on the MPC8260 24.2 Features 24.3 Connecting the MPC8260 to Ethernet 24.4 SCC Ethernet Channel Frame Transmission 24.5 SCC Ethernet Channel Frame Reception 24.6 The Content-Addressable Memory (CAM) Interface 24-8 MPC8260 PowerQUICC II Users Manual MOTOROLA 24.7 SCC Ethernet Parameter RAM For Ethernet mode, the protocol-specic area of the SCC parameter RAM is mapped as in Table 24-1. Table 24-1. SCC Ethernet Parameter RAM Memory Map MOTOROLA Chapter 24. SCC Ethernet Mode 24-9 Table 24-1. SCC Ethernet Parameter RAM Memory Map (Continued) 24-10 MPC8260 PowerQUICC II Users Manual MOTOROLA 24.8 Programming the Ethernet Controller 24.9 SCC Ethernet Commands Table 24-2. Transmit Commands Table 24-1. SCC Ethernet Parameter RAM Memory Map (Continued) 24.10 SCC Ethernet Address Recognition 24-12 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 24-4. Ethernet Address Recognition Flowchart 24.11 Hash Table Algorithm 24.12 Interpacket Gap Time 24.13 Handling Collisions 24.14 Internal and External Loopback 24.15 Full-Duplex Ethernet Support 24.16 Handling Errors in the Ethernet Controller MOTOROLA Chapter 24. SCC Ethernet Mode 24-15 Table 24-4 describes reception errors. 24.17 Ethernet Mode Register (PSMR) Table 24-5. Reception Errors Figure 24-5. Ethernet Mode Register (PSMR) Table 24-4. Transmission Errors (Continued) 24-16 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 24-6 describes PSMR elds. Table 24-6. PSMR Field Descriptions MOTOROLA Chapter 24. SCC Ethernet Mode 24-17 24.18 SCC Ethernet Receive BD The Ethernet controller uses the RxBD to report on the received data for each buffer. Table 24-7 describes RxBD status and control elds. Table 24-6. PSMR Field Descriptions 24-18 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 24-7. SCC Ethernet Receive RxBD Status and Control Field Descriptions (Continued) MOTOROLA Chapter 24. SCC Ethernet Mode 24-19 Figure 24-7. Ethernet Receiving using RxBDs 24.19 SCC Ethernet Transmit Buffer Descriptor 24-20 MPC8260 PowerQUICC II Users Manual MOTOROLA conrm transmission or indicate errors so the core knows buffers have been serviced. Table 24-8 describes TxBD status and control elds. 24.20 SCC Ethernet Event Register (SCCE)/Mask 24-22 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 24-10 shows an example of interrupts that can be generated in Ethernet protocol. Figure 24-10. Ethernet Interrupt Events Example Table 24-9. SCCE/SCCM Field Descriptions (Continued) 24.21 SCC Ethernet Programming Example Page Chapter 25 SCC AppleTalk Mode 25.1 Operating the LocalTalk Bus 25.2 Features 25.3 Connecting to AppleTalk 25.4 Programming the SCC in AppleTalk Mode 25.4.1 Programming the GSMR 25.4.2 Programming the PSMR 25.4.3 Programming the TODR 25.4.4 SCC AppleTalk Programming Example Chapter 26 Serial Management Controllers (SMCs) 26.1 Features 26.2 Common SMC Settings and Congurations 26.2.1 SMC Mode Registers (SMCMR1/SMCMR2) 26-4 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 26-1 describes SMCMR elds. Table 26-1. SMCMR1/SMCMR2 Field Descriptions MOTOROLA Chapter 26. Serial Management Controllers (SMCs) 26-5 26.2.2 SMC Buffer Descriptor Operation Figure 26-3. SMC Memory Structure Table 26-1. SMCMR1/SMCMR2 Field Descriptions (Continued) 26.2.3 SMC Parameter RAM MOTOROLA Chapter 26. Serial Management Controllers (SMCs) 26-7 To extract data from a partially full receive buffer, issue a CLOSE RXBD command. Table 26-2. SMC UART and Transparent Parameter RAM Memory Map (Continued) 26.2.3.1 SMC Function Code Registers (RFCR/TFCR) 26.2.4 Disabling SMCs On-the-Fly 26.2.4.1 SMC Transmitter Full Sequence 26.2.4.2 SMC Transmitter Shortcut Sequence 26.2.4.3 SMC Receiver Full Sequence 26.2.4.4 SMC Receiver Shortcut Sequence 26.3 SMC in UART Mode 26.3.1 Features 26.3.2 SMC UART Channel Transmission Process 26.3.3 SMC UART Channel Reception Process 26.3.4 Programming the SMC UART Controller 26.3.5 SMC UART Transmit and Receive Commands 26.3.6 Sending a Break 26.3.7 Sending a Preamble 26.3.8 Handling Errors in the SMC UART Controller 26-14 MPC8260 PowerQUICC II Users Manual MOTOROLA 26.3.9 SMC UART RxBD Table 26-7 describes RxBD elds. Figure 26-6. SMC UART RxBD Table 26-7. SMC UART RxBD Field Descriptions Table 26-6. SMC UART Errors (Continued) Page 26-16 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 26-7. RxBD Example 26.3.10 SMC UART TxBD Page 26.3.11 SMC UART Event Register (SMCE)/Mask Register (SMCM) 26.3.12 SMC UART Controller Programming Example 26.4 SMC in Transparent Mode 26.4.1 Features 26.4.2 SMC Transparent Channel Transmission Process 26.4.3 SMC Transparent Channel Reception Process 26.4.4 Using SMSYN for Synchronization MOTOROLA Chapter 26. Serial Management Controllers (SMCs) 26-23 Figure 26-11. Synchronization with SMSYNx 26.4.5 Using the Time-Slot Assigner (TSA) for Synchronization Page MOTOROLA Chapter 26. Serial Management Controllers (SMCs) 26-25 26.4.6 SMC Transparent Commands The SMC uses BDs and the SMCE to report message send and receive errors. Table 26-10 describes transmit commands issued to the CPCR. Table 26-11 describes receive commands issued to the CPCR. 26.4.7 Handling Errors in the SMC Transparent Controller 26.4.8 SMC Transparent RxBD Table 26-13 describes SMC transparent RxBD elds. Figure 26-13. SMC Transparent RxBD Table 26-13. SMC Transparent RxBD Field Descriptions MOTOROLA Chapter 26. Serial Management Controllers (SMCs) 26-27 Descriptors (BDs). 26.4.9 SMC Transparent TxBD Table 26-15 describes SMC transparent TxBD elds. Table 26-14. SMC Transparent TxBD Table 26-15. SMC Transparent TxBD Field Descriptions 26.4.10 SMC Transparent Event Register (SMCE)/Mask Register (SMCM) 26.4.11 SMC Transparent NMSI Programming Example 26.5 The SMC in GCI Mode 26.5.1 SMC GCI Parameter RAM Page 26-32 MPC8260 PowerQUICC II Users Manual MOTOROLA 26.5.4 SMC GCI Commands The commands in Table 26-18 are issued to the CPCR. Figure 26-16. SMC Monitor Channel TxBD The CP uses this BD to report about the monitor channel transmit byte. 26.5.5 SMC GCI Monitor Channel RxBD 26.5.7 SMC GCI C/I Channel RxBD Figure 26-18. SMC C/I Channel TxBD The CP uses this BD to report about the C/I channel transmit byte. 26.5.8 SMC GCI C/I Channel TxBD Table 26-20. SMC Monitor Channel TxBD Field Descriptions 26.5.9 SMC GCI Event Register (SMCE)/Mask Register (SMCM) Chapter 27 Multi-Channel Controllers (MCCs) 27.1 Features 27.2 MCC Data Structure Organization MOTOROLA Chapter 27. Multi-Channel Controllers (MCCs) 27-3 Figure 27-1. BD Structure for One MCC 27.3 Global MCC Parameters The global MCC parameters are described in Table 27-1. Table 27-1. Global Multiple-Channel Parameters 27-4 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 27-1. Global Multiple-Channel Parameters (Continued) 27.4 Channel Extra Parameters 27.5 Super-Channel Table 27-6 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 27-3. Transmitter Super Channel Example The example in Figure 27-5 shows a receiver super channel with slot synchronization. MOTOROLA Chapter 27. Multi-Channel Controllers (MCCs) 27-7 Figure 27-4. Receiver Super Channel with Slot Synchronization Example The example in Figure 27-5 shows a receiver super channel without slot synchronization. Figure 27-5. Receiver Super Channel without Slot Synchronization Example 27-8 MPC8260 PowerQUICC II Users Manual MOTOROLA 27.6 Channel-Specic HDLC Parameters Table 27-3 describes channel-specic parameters for HDLC. Table 27-3. Channel-Specific Parameters for HDLC 27.6.1 Internal Transmitter State (TSTATE) 27.6.2 Interrupt Mask (INTMSK) 27.6.3 Channel Mode Register (CHAMR) MOTOROLA Chapter 27. Multi-Channel Controllers (MCCs) 27-11 27.6.4 Internal Receiver State (RSTATE) Table 27-5. CHAMR Field Descriptions (Continued) 27-12 MPC8260 PowerQUICC II Users Manual MOTOROLA RSTATE high-byte elds are described in Table 27-6. 27.7 Channel-Specic Transparent Parameters Table 27-7 describes channel-specic parameters for transparent operation. Figure 27-9. Rx Internal State (RSTATE) High Byte Table 27-6. RSTATE High-Byte Field Descriptions Table 27-7. Channel-Specific Parameters for Transparent Operation MOTOROLA Chapter 27. Multi-Channel Controllers (MCCs) 27-13 27.7.1 Channel Mode Register (CHAMR)Transparent Mode Figure 27-10 shows the user-initialized channel mode register, CHAMR, for transparent mode. Table 27-7. Channel-Specific Parameters for Transparent Operation (Continued) CHAMR elds are described in Table 27-5, 27-14 MPC8260 PowerQUICC II Users Manual MOTOROLA 27.8 MCC Conguration Registers (MCCFx) 27.9 MCC Commands 27.10 MCC Exceptions 27.10.1 MCC Event Register (MCCE)/Mask Register (MCCM) MOTOROLA Chapter 27. Multi-Channel Controllers (MCCs) 27-19 Table 27-13 describes MCCE elds. 27.10.1.1 Interrupt Table Entry Table 27-13. MCCE/MCCM Register Field Descriptions Table 27-14 describes interrupt circular table elds. 27-20 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 27. Multi-Channel Controllers (MCCs) 27-21 27.11 MCC Buffer Descriptors RxBD elds are described in Table 27-15. 27.11.1 Receive Buffer Descriptor (RxBD) Figure 27-15 shows the RxBD. Figure 27-15. MCC Receive Buffer Descriptor (RxBD) Table 27-15. RxBD Field Descriptions Table 27-15. RxBD Field Descriptions (Continued) 27.11.2 Transmit Buffer Descriptor (TxBD) 27.12 MCC Initialization and Start/Stop Sequence 27.12.1 Single-Channel Initialization 27.12.2 Super Channel Initialization 27.13 MCC Latency and Performance Page Page Chapter 28 Fast Communications Controllers (FCCs) 28.1 Overview MOTOROLA Chapter 28. Fast Communications Controllers (FCCs) 28-3 Figure 28-1. FCC Block Diagram 28.2 General FCC Mode Registers (GFMRx) Figure 28-2. General FCC Mode Register (GFMR) 28-4 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 28-1 describes GFMR elds. Table 28-1. GFMR Register Field Descriptions MOTOROLA Chapter 28. Fast Communications Controllers (FCCs) 28-5 Table 28-1. GFMR Register Field Descriptions (Continued) 28-6 MPC8260 PowerQUICC II Users Manual MOTOROLA 28.3 FCC Protocol-Specic Mode Registers (FPSMRx) 28.4 FCC Data Synchronization Registers (FDSRx) 28.5 FCC Transmit-on-Demand Registers (FTODRx) 28.6 FCC Buffer Descriptors Page 28.7 FCC Parameter RAM Page 28-12 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 28-5. FCC Parameter RAM Common to All Protocols (Continued) 28.7.1 FCC Function Code Registers (FCRx) 28.8 Interrupts from the FCCs 28.8.1 FCC Event Registers (FCCEx) 28.8.2 FCC Mask Registers (FCCMx) 28.8.3 FCC Status Registers (FCCSx) 28.9 FCC Initialization 28.10 FCC Interrupt Handling 28.11 FCC Timing Control Page Page 28-18 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 28-8. CTS Lost 28.12 Disabling the FCCs On-the-Fly 28.12.1 FCC Transmitter Full Sequence 28.12.2 FCC Transmitter Shortcut Sequence 28.12.3 FCC Receiver Full Sequence 28.12.4 FCC Receiver Shortcut Sequence 28.12.5 Switching Protocols 28.13 Saving Power Page Chapter 29 ATM Controller 29.1 Features Page 29.2 ATM Controller Overview 29.2.1 Transmitter Overview 29.2.1.1 AAL5 Transmitter Overview 29.2.1.2 AAL1 Transmitter Overview 29.2.1.3 AAL0 Transmitter Overview 29.2.1.4 Transmit External Rate and Internal Rate Modes 29.2.2 Receiver Overview 29.2.2.1 AAL5 Receiver Overview 29.2.2.2 AAL1 Receiver Overview 29.2.2.3 AAL0 Receiver Overview 29.2.3 Performance Monitoring 29.2.4 ABR Flow Control 29.3 ATM Pace Control (APC) Unit 29.3.1 APC Modes and ATM Service Types 29.3.2 APC Unit Scheduling Mechanism 29.3.3 Determining the Scheduling Table Size 29.3.3.1 Determining the Cells Per Slot (CPS) in a Scheduling Table 29.3.3.2 Determining the Number of Slots in a Scheduling Table 29.3.4 Determining the Time-Slot Scheduling Rate of a Channel 29.3.5 ATM Trafc Type 29.3.5.1 Peak Cell Rate Trafc Type 29.3.5.2 Determining the PCR Trafc Type Parameters 29.3.5.3 Peak and Sustain Trafc Type (VBR) 29.3.5.4 Peak and Minimum Cell Rate Trafc Type (UBR+) 29.3.6 Determining the Priority of an ATM Channel 29.4 VCI/VPI Address Lookup Mechanism 29.4.1 External CAM Lookup 29.4.2 Address Compression 29-16 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 29-5. Address Compression Mechanism Table 29-3. Field Descriptions for Address Compression 29.4.2.1 VP-Level Address Compression Table (VPLT) 29.4.2.2 VC-Level Address Compression Tables (VCLTs) 29.4.3 Misinserted Cells 29.4.4 Receive Raw Cell Queue 29.5 Available Bit Rate (ABR) Flow Control 29.5.1 The ABR Model 29.5.1.1 ABR Flow Control Source End-System Behavior 29.5.1.2 ABR Flow Control Destination End-System Behavior 29.5.1.3 ABR Flowcharts 29-23 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 29-12. ABR Transmit Flow (Continued) 29-24 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 29-13. ABR Transmit Flow (Continued) 29-25 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 29-14. ABR Receive Flow 29.5.2 RM Cell Structure 29-26 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.5.2.1 RM Cell Rate Representation Figure 29-15. Rate Format for RM Cells The rate (in cells/second) is calculated as in Figure 29-16. Figure 29-16. Rate Formula for RM Cells Table 29-7. Fields and their Positions in RM Cells 29.6 OAM Support 29.6.1 ATM-Layer OAM Denitions 29.6.2 Virtual Path (F4) Flow Mechanism 29.6.3 Virtual Channel (F5) Flow Mechanism 29.6.4 Receiving OAM F4 or F5 Cells 29.6.5 Transmitting OAM F4 or F5 Cells 29.6.6 Performance Monitoring 29.6.6.1 Running a Performance Block Test 29.6.6.2 PM Block Monitoring 29.6.6.3 PM Block Generation 29.6.6.4 BRC Performance Calculations 29.7 User-Dened Cells (UDC) 29.7.1 UDC Extended Address Mode (UEAD) 29.8 ATM Layer Statistics 29.9 ATM-to-TDM Interworking 29.9.1 Automatic Data Forwarding 29.9.2 Using Interrupts in Automatic Data Forwarding 29.9.3 Timing Issues 29.9.4 Clock Synchronization (SRTS and Adaptive FIFOs) 29.9.5 Mapping TDM Time Slots to VCs 29.9.6 CAS Support 29.9.7 Trunk Condition 29.10 ATM Memory Structure 29.10.1 Parameter RAM 29-38 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-11. ATM Parameter RAM Map 29-39 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-11. ATM Parameter RAM Map (Continued) 29-40 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.10.1.1 Determining UEAD_OFFSET (UEAD Mode Only) 29.10.1.2 VCI Filtering (VCIF) Table 29-12. UEAD_OFFSETs for Extended Addresses in the UDC Extra Header Figure 29-22. VCI Filtering Enable Bits Table 29-13. VCI Filtering Enable Field Descriptions Table 29-11. ATM Parameter RAM Map (Continued) 29.10.1.3 Global Mode Entry (GMODE) Figure 29-23 shows the layout of the global mode entry (GMODE). Table 29-14 describes GMODE elds. 29.10.2 Connection Tables (RCT, TCT, and TCTE) Figure 29-23. Global Mode Entry (GMODE) Table 29-14. GMODE Field Descriptions 29.10.2.1 ATM Channel Code 29.10.2.2 Receive Connection Table (RCT) Figure 29-25. Receive Connection Table (RCT) Entry 29-44 MPC8260 PowerQUICC II Users Manual MOTOROLA 29-45 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-16 describes RCT elds. Table 29-16. RCT Field Descriptions 29-46 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 29-26. AAL5 Protocol-Specific RCT Table 29-16. RCT Field Descriptions (Continued) 29-47 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-17 describes AAL5 protocol specic RCT elds. Figure 29-27. AAL5-ABR Protocol-Specific RCT Table 29-17. RCT Settings (AAL5 Protocol-Specific) 29-48 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-18 describes AAL5-ABR protocol-specic RCT elds. Figure 29-28. AAL1 Protocol-Specific RCT Table 29-19 describes AAL1 protocol-specic RCT elds. Table 29-18. ABR Protocol-Specific RCT Field Descriptions 29-49 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-19. AAL1 Protocol-Specific RCT Field Descriptions 29-50 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-20 describes AAL0 protocol specic RCT elds. Figure 29-29. AAL0 Protocol-Specific RCT Table 29-20. AAL0-Specific RCT Field Descriptions Table 29-19. AAL1 Protocol-Specific RCT Field Descriptions (Continued) 29-51 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.10.2.3 Transmit Connection Table (TCT) Figure 29-30 shows the format of an TCT entry. Figure 29-30. Transmit Connection Table (TCT) Entry Table 29-21 describes general TCT elds. Table 29-20. AAL0-Specific RCT Field Descriptions (Continued) Table 29-21. TCT Field Descriptions 29-53 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-21. TCT Field Descriptions (Continued) 29-54 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.10.2.3.1 AAL5 Protocol-Specic TCT Figure 29-31 shows the AAL5 protocol-specic TCT. Table 29-22 describes AAL5 protocol-specic TCT elds. 29.10.2.3.2 AAL1 Protocol-Specic TCT Figure 29-32 shows the AAL1 protocol-specic TCT. Figure 29-31. AAL5 Protocol-Specific TCT Table 29-22. AAL5-Specific TCT Field Descriptions Figure 29-32. AAL1 Protocol-Specific TCT Table 29-23 describes AAL1 protocol-specic TCT elds. 29.10.2.3.3 AAL0 Protocol-Specic TCT Figure 29-33 shows the AAL0 protocol-specic TCT. Figure 29-33. AAL0 Protocol-Specific TCT Table 29-23. AAL1-Specific TCT Field Descriptions 29-56 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-24 describes AAL0 protocol-specic TCT elds. 29.10.2.3.4 VBR Protocol-Specic TCTE Figure 29-34 shows the VBR protocol-specic TCTE. Table 29-25 describes VBR protocol-specic TCTE elds. Table 29-24. AAL0-Specific TCT Field Descriptions 29-57 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.10.2.3.5 UBR+ Protocol-Specic TCTE Figure 29-35 shows the UBR+ protocol-specic TCTE. Table 29-26 describes UBR+ protocol-specic TCTE elds. Table 29-25. VBR-Specific TCTE Field Descriptions (Continued) 29-58 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.10.2.3.6 ABR Protocol-Specic TCTE Figure 29-36 shows the ABR protocol-specic TCTE. Table 29-27 describes ABR-specic TCTE elds. Figure 29-36. ABR Protocol-Specific TCTE Table 29-27. ABR-Specific TCTE Field Descriptions 29-59 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-27. ABR-Specific TCTE Field Descriptions (Continued) 29.10.3 OAM Performance Monitoring Tables 29-61 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.10.4 APC Data Structure Table 29-28. OAMPerformance Monitoring Table Field Descriptions 29-62 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 29-38. ATM Pace Control Data Structure 29.10.4.1 APC Parameter Tables Table 29-29. APC Parameter Table 29.10.4.2 APC Priority Table 29.10.4.3 APC Scheduling Tables 29.10.5 ATM Controller Buffer Descriptors (BDs) 29.10.5.1 Transmit Buffer Operations 29.10.5.2 Receive Buffers Operation Page 29-67 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 29-43. Receive Global Buffer Allocation Example Figure 29-44. Free Buffer Pool Structure Figure 29-45 describes the structure of a free buffer pool entry. 29-68 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-32 describes free buffer pool entry elds. Figure 29-45. Free Buffer Pool Entry Table 29-32. Free Buffer Pool Entry Field Descriptions Table 29-33. Free Buffer Pool Parameter Table 29-69 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.10.5.3 ATM Controller Buffers Table 29-34 describes properties of the ATM receive and transmit buffers. Figure 29-46 shows the AAL5 RxBD. 29.10.5.4 AAL5 RxBD Table 29-34. Receive and Transmit Buffers Table 29-35 describes AAL5 RxBD elds. Table 29-35. AAL5 RxBD Field Descriptions 29-71 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.10.5.5 AAL1 RxBD Figure 29-47 shows the AAL1 RxBD. Figure 29-47. AAL1 RxBD Table 29-35. AAL5 RxBD Field Descriptions (Continued) 29-72 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.10.5.6 AAL0 RxBD Figure 29-48. AAL0 RxBD Figure 29-48 shows the AAL0 RxBD. Table 29-36. AAL1 RxBD Field Descriptions 29-73 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.10.5.7 AAL5, AAL1 User-Dened CellRxBD Extension Table 29-37. AAL0 RxBD Field Descriptions 29.10.5.8 AAL5 TxBDs Figure 29-50 shows the AAL5 TxBD. 29-75 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-38 describes AAL5 TxBD elds. Table 29-38. AAL5 TxBD Field Descriptions 29-76 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.10.5.9 AAL1 TxBDs Figure 29-51 shows the AAL1 TxBD. Table 29-39 describes AAL1 TxBD elds. Figure 29-51. AAL1 TxBD Table 29-39. AAL1 TxBD Field Descriptions 29-77 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.10.5.10 AAL0 TxBDs Table 29-40 describes AAL0 TxBD elds. Figure 29-52. AAL0 TxBDs Table 29-40. AAL0 TxBD Field Descriptions 29.10.5.11 AAL5, AAL1 User-Dened CellTxBD Extension 29.10.6 AAL1 Sequence Number (SN) Protection Table (AAL1 Only) 29.10.7 UNI Statistics Table 29.11 ATM Exceptions 29.11.1 Interrupt Queues 29-80 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 29-55. Interrupt Queue Structure 29.11.2 Interrupt Queue Entry Figure 29-56. Interrupt Queue Entry 29-81 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-42 describes interrupt queue entry elds. 29.11.3 Interrupt Queue Parameter Tables Table 29-42. Interrupt Queue Entry Field Description Table 29-43. Interrupt Queue Parameter Table 29-82 MPC8260 PowerQUICC II Users Manual MOTOROLA 29.12 The UTOPIA Interface Table 29-44 describes UTOPIA master mode signals. 29.12.1 UTOPIA Interface Master Mode UTOPIA master signals are shown in Figure 29-57. Figure 29-57. UTOPIA Master Mode Signals 29.12.1.1 UTOPIA Master Multiple PHY Operation 29.12.2 UTOPIA Interface Slave Mode 29-84 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 29-45 describes UTOPIA slave mode signals. 29.12.2.1 UTOPIA Slave Multiple PHY Operation 29.12.2.2 UTOPIA Clocking Modes Table 29-45. UTOPIA Slave Mode Signals 29.12.2.3 UTOPIA Loop-Back Modes 29.13 ATM Registers 29.13.1 General FCC Mode Register (GFMR) 29.13.2 FCC Protocol-Specic Mode Register (FPSMR) Table 29-47 describes FPSMR elds. 29-86 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 29-59. FCC ATM Mode Register (FPSMR) Table 29-47. FCC ATM Mode Register (FPSMR) 29.13.3 ATM Event Register (FCCE)/Mask Register (FCCM) 29.13.4 FCC Transmit Internal Rate Registers (FTIRRx) Page 29.14 ATM Transmit Command 29.15 SRTS Generation and Clock Recovery Using External Logic 29.16 Conguring the ATM Controller for Maximum CPM Performance 29.16.1 Using Transmit Internal Rate Mode 29.16.2 APC Conguration 29.16.3 Buffer Conguration Page Chapter 30 Fast Ethernet Controller 30.1 Fast Ethernet on the MPC8260 30.2 Features 30.3 Connecting the MPC8260 to Fast Ethernet 30.4 Ethernet Channel Frame Transmission Page 30.5 Ethernet Channel Frame Reception 30.6 Flow Control 30.7 CAM Interface MOTOROLA Chapter 30. Fast Ethernet Controller 30-9 30.8 Ethernet Parameter RAM For Ethernet mode, the protocol-specic area of the FCC parameter RAM is mapped as in Table 30-2. Table 30-2. Ethernet-Specific Parameter RAM 30-10 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 30-2. Ethernet-Specific Parameter RAM (Continued) MOTOROLA Chapter 30. Fast Ethernet Controller 30-11 30.9 Programming Model 30.10 Ethernet Command Set MOTOROLA Chapter 30. Fast Ethernet Controller 30-13 Receive commands that apply to Ethernet are described in Table 30-4. Table 30-4. Receive Commands Table 30-3. Transmit Commands (Continued) 30-14 MPC8260 PowerQUICC II Users Manual MOTOROLA 30.11 RMON Support Table 30-5. RMON Statistics and Counters MOTOROLA Chapter 30. Fast Ethernet Controller 30-15 30.12 Ethernet Address Recognition Table 30-5. RMON Statistics and Counters (Continued) 30-16 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 30-4. Ethernet Address Recognition Flowchart 30.13 Hash Table Algorithm 30.14 Interpacket Gap Time 30.15 Handling Collisions 30.16 Internal and External Loopback MOTOROLA Chapter 30. Fast Ethernet Controller 30-19 30.17 Ethernet Error-Handling Procedure Reception errors are described in Table 30-7. 30.18 Fast Ethernet Registers Table 30-6. Transmission Errors Table 30-7. Reception Errors 30.18.1 FCC Ethernet Mode Register (FPSMR) Table 30-8 describes FPSMR elds. Figure 30-5. FCC Ethernet Mode Registers (FPSMR) Table 30-8. FPSMR Ethernet Field Descriptions 30.18.2 Ethernet Event Register (FCCE)/Mask Register (FCCM) 30-22 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 30-9 describes FCCE/FCCM elds. Figure 30-7 shows interrupts that can be generated in the Ethernet protocol. MOTOROLA Chapter 30. Fast Ethernet Controller 30-23 Figure 30-7. Ethernet Interrupt Events Example 30.19 Ethernet RxBDs Table 30-10 describes Ethernet RxBD elds. 30-24 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 30-8. Fast Ethernet Receive Buffer (RxBD) Table 30-10. RxBD Field Descriptions Page 30-26 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 30-9. Ethernet Receiving Using RxBDs 30.20 Ethernet TxBDs Table 30-11 describes Ethernet TxBD elds. MOTOROLA Chapter 30. Fast Ethernet Controller 30-27 Figure 30-10. Fast Ethernet Transmit Buffer (TxBD) Table 30-11. Ethernet TxBD Field Definitions Page Chapter 31 FCC HDLC Controller 31.1 Key Features 31.2 HDLC Channel Frame Transmission Processing 31.3 HDLC Channel Frame Reception Processing 31-4 MPC8260 PowerQUICC II Users Manual MOTOROLA 31.4 HDLC Parameter RAM Table 31-1. FCC HDLC-Specific Parameter RAM Memory Map MOTOROLA Chapter 31. FCC HDLC Controller 31-5 Figure 31-2 shows an example of using HMASK and HADDR[14]. Figure 31-2. HDLC Address Recognition Example 31.5 Programming Model 31.5.1 HDLC Command Set Table 31-2. Transmit Commands 31-6 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 31-3 describes the receive commands that apply to the HDLC controller. 31.5.2 HDLC Error Handling Table 31-3. Receive Commands Table 31-4. HDLC Transmission Errors Table 31-2. Transmit Commands (Continued) MOTOROLA Chapter 31. FCC HDLC Controller 31-7 31.6 HDLC Mode Register (FPSMR) Table 31-5. HDLC Reception Errors The FPSMR elds are described in Table 31-6. 31-8 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 31-3. HDLC Mode Register (FPSMR) Table 31-6. FPSMR Field Descriptions 31.7 HDLC Receive Buffer Descriptor (RxBD) . . . 31-10 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 31-4. FCC HDLC Receiving Using RxBDs MOTOROLA Chapter 31. FCC HDLC Controller 31-11 Figure 31-5 shows the FCC HDLC RxBD. Table 31-7 describes RxBD elds. Figure 31-5. FCC HDLC Receive Buffer Descriptor (RxBD) Table 31-7. RxBD field Descriptions 31.8 HDLC Transmit Buffer Descriptor (TxBD) MOTOROLA Chapter 31. FCC HDLC Controller 31-13 Table 31-8 describes HDLC TxBD elds. The TxBD status bits are written by the HDLC controller after sending the associated data buffer. Table 31-8. HDLC TxBD Field Descriptions 31.9 HDLC Event Register (FCCE)/Mask Register (FCCM) MOTOROLA Chapter 31. FCC HDLC Controller 31-15 Figure 31-8 shows interrupts that can be generated in the HDLC protocol. Table 31-9. FCCE/FCCM Field Descriptions 31-16 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 31-8. HDLC Interrupt Event Example 31.10 FCC Status Register (FCCS) Figure 31-9. FCC Status Register (FCCS) MOTOROLA Chapter 31. FCC HDLC Controller 31-17 Table 31-10 describes FCCS bits. Table 31-10. FCCS Register Field Descriptions Page Chapter 32 FCC Transparent Controller 32.1 Features 32.2 Transparent Channel Operation 32.3 Achieving Synchronization in Transparent Mode 32.3.1 In-Line Synchronization Pattern 32.3.2 External Synchronization Signals 32-4 MPC8260 PowerQUICC II Users Manual MOTOROLA 32.3.3 Transparent Synchronization Example Figure 32-2 shows an example of synchronization using external signals. Figure 32-2. Sending Transparent Frames between MPC8260s Chapter 33 Serial Peripheral Interface (SPI) 33.1 Features 33.2 SPI Clocking and Signal Functions 33.3 Conguring the SPI Controller 33.3.1 The SPI as a Master Device 33.3.2 The SPI as a Slave Device 33.3.3 The SPI in Multimaster Operation MOTOROLA Chapter 33. Serial Peripheral Interface (SPI) 33-5 Figure 33-3. Multimaster Configuration 33.4 Programming the SPI Registers 33.4.1 SPI Mode Register (SPMODE) MOTOROLA Chapter 33. Serial Peripheral Interface (SPI) 33-7 Figure 33-5. SPI Transfer Format with SPMODE[CP] = 0 Figure 33-6. SPI Transfer Format with SPMODE[CP] = 1 Table 33-1. SPMODE Field Descriptions (Continued) 33.4.1.1 SPI Examples with Different SPMODE[LEN] Values 33.4.2 SPI Event/Mask Registers (SPIE/SPIM) 33.4.3 SPI Command Register (SPCOM) 33.5 SPI Parameter RAM MOTOROLA Chapter 33. Serial Peripheral Interface (SPI) 33-11 Table 33-5. SPI Parameter RAM Memory Map (Continued) 33-12 MPC8260 PowerQUICC II Users Manual MOTOROLA 33.5.1 Receive/Transmit Function Code Registers (RFCR/TFCR) Figure 33-9 shows the elds in the receive/transmit function code registers (RFCR/TFCR) Table 33-7 lists transmit/receive commands sent to the CP command register (CPCR). 33.6 SPI Commands Figure 33-9. RFCR/TFCRFunction Code Registers Table 33-6. RFCR/TFCR Field Descriptions Table 33-7. SPI Commands 33.7 The SPI Buffer Descriptor (BD) Table 33.7.1 SPI Buffer Descriptors (BDs) 33.7.1.1 SPI Receive BD (RxBD) MOTOROLA Chapter 33. Serial Peripheral Interface (SPI) 33-15 33.7.1.2 SPI Transmit BD (TxBD) Table 33-9 describes the TxBD status and control elds. Figure 33-12. SPI TxBD Table 33-9. SPI TxBD Status and Control Field Descriptions Table 33-8. SPI RxBD Status and Control Field Descriptions (Continued) 33.8 SPI Master Programming Example 33.9 SPI Slave Programming Example 33.10 Handling Interrupts in the SPI Chapter 34 I2C Controller 34.1 Features 34.2 I2C Controller Clocking and Signal Functions 34.3 I2C Controller Transfers 34.3.1 I2C Master Write (Slave Read) 34.3.2 I2C Loopback Testing 34.3.3 I2C Master Read (Slave Write) 34.3.4 I2C Multi-Master Considerations 34.4 I2C Registers 34.4.1 I2C Mode Register (I2MOD) MOTOROLA Chapter 34. I2C Controller 34-7 34.4.2 I2C Address Register (I2ADD) The I2C address register, shown in Figure 34-7, holds the address for this I2C port. Table 34-2 describes I2CADD elds. 34.4.3 I2C Baud Rate Generator Register (I2BRG) The I2C baud rate generator register, shown in Figure 34-8, sets the divide ratio of the I2C BRG. 34.4.4 I2C Event/Mask Registers (I2CER/I2CMR) 34.4.5 I2C Command Register (I2COM) MOTOROLA Chapter 34. I2C Controller 34-9 Table 34-5 describes I2COM elds. 34.5 I2C Parameter RAM Figure 34-10. I2C Command Register (I2COM) Table 34-5. I2COM Field Descriptions Table 34-6. I2C Parameter RAM Memory Map 34-10 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 34-6. I2C Parameter RAM Memory Map (Continued) MOTOROLA Chapter 34. I2C Controller 34-11 Figure 34-11 shows the RFCR/TFCR bit elds. Table 34-7 describes the RFCR/TFCR bit elds. 34.6 I2C Commands Figure 34-11. I2C Function Code Registers (RFCR/TFCR) Table 34-7. RFCR/TFCR Field Descriptions Table 34-8. I2C Transmit/Receive Commands 34.7 The I2C Buffer Descriptor (BD) Table 34.7.1 I2C Buffer Descriptors (BDs) MOTOROLA Chapter 34. I2C Controller 34-13 34.7.1.1 I2C Receive Buffer Descriptor (RxBD) Table 34-9 describes I2C RxBD status and control bits. Figure 34-13. I2C RxBD Table 34-9. I2C RxBD Status and Control Bits 34-14 MPC8260 PowerQUICC II Users Manual MOTOROLA 34.7.1.2 I2C Transmit Buffer Descriptor (TxBD) Table 34-10 describes I2C TxBD status and control bits. Figure 34-14. I2C TxBD Table 34-10. I2C TxBD Status and Control Bits Chapter 35 Parallel I/O Ports 35.1 Features 35.2 Port Registers 35.2.1 Port Open-Drain Registers (PODRAPODRD) 35.2.2 Port Data Registers (PDATAPDATD) MOTOROLA Chapter 35. Parallel I/O Ports 35-3 35.2.3 Port Data Direction Registers (PDIRAPDIRD) Table 35-2 describes PDIR elds. The port data direction register(PDIR), shown in Figure 35-3, is cleared at system reset. Figure 35-2. Port Data Registers (PDATAPDATD) Figure 35-3. Port Data Direction Register (PDIR) Table 35-2. PDIR Field Descriptions 35.2.4 Port Pin Assignment Register (PPAR) The port pin assignment register (PPAR) is cleared at system reset. Table 35-2 describes PPARx elds. 35.2.5 Port Special Options Registers AD (PSORAPSORD) Figure 35-5 shows the port special options registers (PSORx). NOTE Figure 35-5. Special Options Registers (PSORAPOSRD) Table 35-4. PSORx Field Descriptions 35-6 MPC8260 PowerQUICC II Users Manual MOTOROLA 35.3 Port Block Diagram Figure 35-6 shows the functional block diagram. Figure 35-6. Port Functional Operation 35.4 Port Pins Functions Each pin can operate as a general purpose I/O pin or as a dedicated input or output pin. 35.5 Ports Tables 35-8 MPC8260 PowerQUICC II Users Manual MOTOROLA Figure 35-7. Primary and Secondary Option Programming Table 35-5. Port ADedicated Pin Assignment (PPARA = 1) MOTOROLA Chapter 35. Parallel I/O Ports 35-9 35-10 MPC8260 PowerQUICC II Users Manual MOTOROLA MOTOROLA Chapter 35. Parallel I/O Ports 35-11 35-12 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 35-6 shows the port B pin assignments. Table 35-6. Port B Dedicated Pin Assignment (PPARB = 1) MOTOROLA Chapter 35. Parallel I/O Ports 35-13 Table 35-6. Port B Dedicated Pin Assignment (PPARB = 1) (Continued) Table 35-7 shows the port C pin assignments. 35-14 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 35-7. Port C Dedicated Pin Assignment (PPARC = 1) Table 35-6. Port B Dedicated Pin Assignment (PPARB = 1) (Continued) 35-15 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 35-7. Port C Dedicated Pin Assignment (PPARC = 1) (Continued) 35-16 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 35-7. Port C Dedicated Pin Assignment (PPARC = 1) (Continued) MOTOROLA Chapter 35. Parallel I/O Ports 35-17 Table 35-8 shows the port D pin assignments. Table 35-8. Port D Dedicated Pin Assignment (PPARD = 1) 35-18 MPC8260 PowerQUICC II Users Manual MOTOROLA Table 35-8. Port D Dedicated Pin Assignment (PPARD = 1) (Continued) MOTOROLA Chapter 35. Parallel I/O Ports 35-19 35.6 Interrupts from Port C Table 35-8. Port D Dedicated Pin Assignment (PPARD = 1) (Continued) Page MOTOROLA Appendix A. Register Quick Reference Guide A-1 Appendix A Register Quick Reference Guide This section provides a brief guide to the core registers. Table A-2 lists SPRs dened by the PowerPC architecture implemented on the MPC8260. A.1 PowerPC RegistersUser Registers Table A-1. User-Level PowerPC Registers (Non-SPRs) A.2 PowerPC RegistersSupervisor Registers Table A-4 lists supervisor-level SPRs defined by the PowerPC architecture. Table A-3. Supervisor-Level PowerPC Registers (Non-SPR) Table A-4. Supervisor-Level PowerPC SPRs MOTOROLA Appendix A. Register Quick Reference Guide A-3 A.3 MPC8260-Specic SPRs Page Numerics A B C Page Page Page Page D E F G H I J L M Page N O P R Page S Page Page Page T U Page Page Page Page Attention!