Chapter 3 Multiplicative Error Reduction
Xmath Model Reduction Module 3-18 ni.com
Note The expression is the strictly proper part of . The matrix
is all pass; this property is not always secured in the multivariable case
when ophank( ) is used to find a Hankel norm approximation of F(s).
5. The algorithm constructs and , which satisfy,
and,
through the state variable formulas
and:
Continue the reduction procedure, starting with , , and
repeating the process till Gr of the desired degree nsr is obtained.
Forexample, in the second iteration, is given by:
(3-4)
Consequences of Step 5 and Justification of Step 6
A number of properties are true:
is of order nsr, with:
(3-5)
F
ˆps() F
ˆs()
vns
1Fs() F
ˆs()[]
G
ˆW
ˆ
G
ˆs() Gs() Ws()Fs() F
ˆs()[]=
W
ˆs() Iv
nsT()Iv
nsT()
1
=
Ws() Fs() F
ˆs()[]Gs()+{}
G
ˆs() DI v
nsT()()DC
ˆFBW
UΣ1
+[]sI A
ˆF
()
1B
ˆF
=()
W
ˆs() Iv
nsT()DIv
nsT()Iv
nsT()
1
+=
C
ˆFsI A
ˆF
()
1B
ˆFDV1
C+[]
G
ˆW
ˆF
ˆ
G
ˆs()
^
G
ˆs() G
ˆs() W
ˆ��s()F
ˆps() F
ˆs()[]+=
^^
G
ˆs()
G1GG
ˆ
()
vns
=