The drive firmware error recovery algorithms consist of 12 levels for read recoveries and five levels for write. Each level may consist of multiple steps, where a step is defined as a recovery function involving a single re- read or re-write attempt. The maximum level used by the drive in LBA recovery is determined by the read and write retry counts.

Table 5 equates the read and write retry count with the maximum possible recovery time for read and write recovery of individual LBAs. The times given do not include time taken to perform reallocations. Reallocations are performed when the ARRE bit (for reads) or AWRE bit (for writes) is one, the RC bit is zero, and the recov- ery time limit for the command has not yet been met. Time needed to perform reallocation is not counted against the recovery time limit.

When the RC bit is one, reallocations are disabled even if the ARRE or AWRE bits are one. The drive will still perform data recovery actions within the limits defined by the Read Retry Count, Write Retry Count, and Recovery Time Limit parameters. However, the drive does not report any unrecovered errors.

Table 5: Read and write retry count maximum recovery times

 

Maximum recovery time per

Read retry count

LBA (cumulative, ms)

 

 

 

 

0

108.29

 

 

1

124.95

 

 

2

424.83

 

 

3

458.15

 

 

4

483.14

 

 

5

590.16

 

 

6

644.92

 

 

7

711.56

 

 

8

898.54

 

 

9

1049.49

 

 

10

1116.13

 

 

11

1174.44

 

 

12 (default)

2311.47

 

 

Write retry count

Maximum recovery time per

LBA (cumulative, ms)

 

 

0

23.94

 

 

1

35.91

 

 

2

55.86

 

 

3

67.83

 

 

4

119.79

 

 

5 (default)

147.72

 

 

Setting these retry counts to a value below the default setting could result in degradation of the unrecovered error rate. For example, suppose the read/write recovery page has the RC bit = 0, the read retry count set to 4, and the recovery time limit set to 450. A 4-block read command can take up to 483.14ms recovery time for each block and a maximum of 450ms recovery for all four blocks. If either of these limits is reached and a block has not yet been recovered, the command will end with Check Condition status and an unrecoverable read error will be reported.

10.3SAS system errors

Information on the reporting of operational errors or faults across the interface is given in the SAS Interface Manual. The SSP Response returns information to the host about numerous kinds of errors or faults. The Receive Diagnostic Results reports the results of diagnostic operations performed by the drive.

Status returned by the drive to the initiator is described in the SAS Interface Manual. Status reporting plays a role in systems error management and its use in that respect is described in sections where the various com- mands are discussed.

Constellation ES.1 SAS Product Manual, Rev. E

47

Downloaded from www.Manualslib.com manuals search engine

Page 55
Image 55
Seagate ST1000NM0021, ST1000NM0001, ST1000NM0041, ST2000NM0041, ST2000NM0021, ST2000NM0001, ST500NM0041 manual SAS system errors

ST2000NM0001, ST1000NM0041, ST500NM0001, ST2000NM0021, ST1000NM0021 specifications

Seagate is a renowned leader in data storage solutions, offering a wide array of hard disk drives (HDDs) suitable for various applications. Among their product lineup, the Seagate ST2000NM0041, ST500NM0021, ST500NM0041, ST1000NM0001, and ST1000NM0021 stand out as reliable options tailored for enterprise environments and general storage needs.

The Seagate ST2000NM0041 is a 2TB 7200 RPM drive designed for high-performance workloads in data centers. One of its key features is the use of the SATA III interface, providing data transfer speeds of up to 6 Gbps, ensuring quick access to data. This model supports advanced error recovery controls and features enhanced power management capabilities, which contribute to its reliable performance and energy efficiency.

Next, the ST500NM0021 and ST500NM0041 are both 500GB drives that cater to different consumer needs. The ST500NM0021 is a 5400 RPM drive, typically used in scenarios where lower power consumption is vital, such as in compact systems or external storage configurations. Its efficient design enables quieter operation, making it ideal for environments that require minimal noise. Conversely, the ST500NM0041 operates at a speed of 7200 RPM, making it suitable for more demanding applications that require swift read and write speeds. Both models utilize Serial ATA for connectivity, ensuring compatibility with a wide range of systems.

The ST1000NM0001 and ST1000NM0021 are 1TB drives that provide versatility across different platforms. Similar to their 500GB counterparts, the ST1000NM0001 features a 7200 RPM speed, optimizing performance for applications requiring faster data processing. In contrast, the ST1000NM0021 operates at 5400 RPM, designed for users prioritizing energy efficiency over speed, like in desktop and external storage solutions. Each of these drives supports advanced technologies such as Native Command Queuing (NCQ), which enhances performance by allowing multiple commands to be executed simultaneously.

Overall, the Seagate ST series hard drives offer flexible storage options for a variety of applications. With their robust features, including varied RPM speeds, power management, and compatibility with SATA connections, these drives cater to the needs of both consumer and enterprise markets, establishing Seagate as a trusted provider in the storage arena.