Standby Generator Sets

Fuel Systems

FUEL SYSTEM

‹FUEL REQUIREMENTS

The standby generator may be equipped with one of the following fuel systems:

Natural gas fuel system

Propane vapor (PV) fuel system

Recommended fuels should have a Btu content of at least 1,000 Btus per cubic foot for natural gas; or at least 2,520 Btus per cubic foot for LP gas. Ask the fuel supplier for the Btu content of the fuel.

Required fuel pressure for natural gas is 5 inches to 14 inches water column (0.18 to 0.5 psi); and for liquid propane, 5 inches to 14 inches of water column (0.18 to 0.5 psi).

NOTE:

Any piping used to connect the generator to the fuel supply should be of adequate size to ensure the fuel pressure NEVER drops below five inches water column for natural gas or 5 inches water column for propane vapor for all load ranges.

NOTE:

It is the responsibility of the installer to make sure that only the correct recommended fuel is sup- plied to the generator fuel system. Thereafter, the owner/operator must make certain that only the proper fuel is supplied.

‹NATURAL GAS FUEL SYSTEM

Natural gas is supplied in its vapor state. In most cases, the gas distribution company provides piping from the main gas distribution line to the standby generator site. The following information applies to natural gas fuel systems.

Gas pressure in a building is usually regulated by national, state and local codes.

To reduce gas pressure to a safe level before the gas enters a building, a primary regulator is needed. The natural gas supplier may or may not supply such a regulator.

It is the responsibility of the gas supplier to make sure sufficient gas pressure is available to operate the primary regulator.

Gas pressure at the inlet to the fuel shutoff sole- noid should not exceed approximately 14 inches water column (0.5 psi). Optimum pressure at the fuel shutoff solenoid is 11 inches water column (0.4 psi).

‹PROPANE VAPOR WITHDRAWAL FUEL SYSTEM

This type of system utilizes the vapors formed above the liquid fuel in the supply tank. Approximately 10 to 20 percent of the tank capacity is needed for fuel expansion from the liquid to the vapor state. The vapor withdrawal system is generally best suited for smaller engines that require less fuel. The installer should be aware of the following:

The natural gas and LP gas systems are similar. However, the natural gas system delivers gas at a pressure of approximately five inches water col- umn to the carburetor.

When ambient temperatures are low and engine fuel consumption is high, the vapor withdrawal system may not function efficiently.

Ambient temperatures around the supply tank must be high enough to sustain adequate vaporiza- tion, or the system will not deliver the needed fuel volume.

In addition to the cooling effects of ambient air, the vaporization process itself provides an additional cooling effect.

5-1

09/05

0 .Rev FuelSys003

Page 9
Image 9
Siemens SG020 owner manual ‹ Fuel Requirements, ‹ Natural GAS Fuel System

SG020 specifications

Siemens SG020 is a cutting-edge turbine designed for a variety of energy applications, particularly in the field of renewable energy generation and industrial processes. As one of the latest innovations from Siemens, this turbine is engineered for efficiency, reliability, and environmental sustainability.

One of the main features of the SG020 is its advanced aerodynamic design. This turbine is built with large rotor blades that optimize wind capture, allowing it to function effectively even in low-wind conditions. The blades are also constructed from lightweight composite materials, enhancing both performance and durability. This design maximizes energy output while minimizing wear and tear, thereby extending the operational lifespan of the turbine.

Incorporated within the Siemens SG020 is an intelligent control system that utilizes state-of-the-art sensors and software algorithms. This technology continuously monitors wind conditions and turbine performance, automatically adjusting the blade pitch and rotor speed to optimize energy production. The smart grid capabilities of the turbine allow it to integrate seamlessly with existing energy systems, making it a flexible solution for various applications, from powering remote communities to integrating with larger industrial facilities.

Another key characteristic of the SG020 is its commitment to sustainability. The turbine is designed to operate with minimal environmental impact, producing clean energy while reducing carbon emissions. Siemens has implemented eco-friendly manufacturing processes and materials in the production of the turbine, underlining the company’s dedication to environmentally responsible energy solutions.

Maintenance of the SG020 is also streamlined through innovative technology. Predictive maintenance features leverage data analytics to anticipate potential issues before they arise, allowing for timely interventions that further reduce downtime and maintenance costs. This enhances the overall reliability of the turbine, making it a dependable choice for energy generation.

The SG020 stands out as a flexible and efficient solution for delivering renewable energy. With its advanced technologies, robust design, and commitment to sustainability, it represents Siemens’ ongoing pursuit of innovation in the energy sector, paving the way for a more sustainable future in power generation.